Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC o
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: SỬa đề: So sánh góc AMB và góc AMC
ΔAMB=ΔAMC
=>góc AMB=góc AMC
a)
Xét tam giác ABM và tam giác ACM có :
góc B = góc C (gt )
AB=AC ( gt )
góc A1 = góc A2 (gt )
suy ra : tam giác ABM = tam giác ACM ( g - c -g )
b )
ta có : tam giác ABM = tam giác ACM suy ra : BM = CM = BC : 2 = 3 (cm )
Theo định lí pitago trong tam giác vuông ABM có :
AB2 = AM2 + BM2
SUY RA : AM2 = AB2 - BM2
AM2 = 52 - 32
AM = căn bậc 2 của 16 = 4 (cm )
c )
Do D nằm giữa 2 điểm M và C nên ta có :
MD + DC = MC
suy ra : MC > MD
Đúng thì nha bạn
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔCBM có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBM cân tại C
c: N ở đâu vậy bạn?
a: Xét ΔABM và ΔADM có
AB=AD
góc BAM=góc DAM
AM chung
Do đó: ΔABM=ΔADM
SUy ra: MB=MD
b: Xét ΔDAK và ΔBAC có
góc ADK=góc ABC
AD=AB
góc DAK chung
Do đó: ΔDAK=ΔBAC
c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A
d: Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
mà AB<AC
nên BM<CM
a). Ta có AM là đường trung trực của đoạn thẳng BC => AM\(\perp\) BC và BM=CM
Xét tam giác AMB vuông tại M và tam giác AMC vuông tại M có:
AM là cạnh chung.
BM=CM (cmt)
=> Tam giác AMB=tam giác AMC (hai cạnh góc vuông)
b). Tam giác AMB=tam giác AMC
=> AB=AC (hai cạnh tương ứng)
=> \(\widehat{BAM}\) = \(\widehat{CAM}\) (hai góc tương ứng)
=> \(\widehat{ABM}=\widehat{ACM}\) (hai góc tương ứng)
c). Xét tam giác ANB và tam giác ANC có:
AB=AC (cmt)
\(\widehat{BAN}=\widehat{CAN}\) (\(\widehat{BAM}=\widehat{CAM};N\in\) AM)
AN là cạnh chung.
=> Tam giác ANB=tam giác ANC (c.g.c)
Giải
Xét tam giác AMB và tam giác AMC
AM chung
AB=AC(gt)
MB=MC(AM là trung tuyến của tam giác ABC)
Vậy tam giác AMB= tam giác AMC(c.c.c)
Suy ra :góc BAM = góc CAM
Suy ra AM là hân giác của gócA
Ý b
Vì tam giác AMB= tam giác AMC(cmt)
suy ra
góc AMB= góc AMC
có góc AMB+AMC=180 độ
mà góc AMB=góc AMC=90 độ
Suy ra AM vuông góc với BC
tam giác AMB vuông tại B
Ý c
Vì MB=MC=3cm
Áp dụng định lý PI-TA-GO và tam giác vuông ta có
AB^2=MB^2+MA^2
25=9+MA^2
MA^2=16
MA=4cm
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Xét ΔMAB vuông tại M và ΔMDC vuông tại M có
MA=MD
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD