K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2015

Gọi \(h_a;h_b\)là đường cao ứng với cạnh BC và AC.

\(\frac{h_b^2}{\sin\alpha.\cos\alpha}=\frac{\left(\frac{h_b}{\sin\alpha}\right)^2}{\frac{\cos\alpha}{\sin\alpha}}=\frac{\left(\frac{BC\sin\alpha}{\sin\alpha}\right)^2}{\cot\alpha}=\frac{BC}{\cot\alpha}.BC=\frac{2h_a\cot\alpha}{\cot\alpha}.BC\)

\(=2h_a.BC=4.\frac{1}{2}h_a.BC=4S_{ABC}\)

21 tháng 7 2021

Mình không có bút ở đây nên gợi ý cho bạn xíu xíu nhé.

Lấy M đối xứng với C qua A => MC = 2 AC = 2 AB

=> MBA  vuông tại B 

Kẻ BH vuông góc AC tại H => BH = h 

Ta có  sin a . cos a  = BH . HC / BC^2 =  h .  HC / BC^2

=> h^2 / 4 sin a cos a  = h.BC^2 / 4HC 

Ta phải chứng minh S ABC = h^2 / 4 sin a cos a

<=> BH .AC /2  = h.BC^2 / 4HC

<=> 2 AC .HC= BC^2

<=> CM . HC = BC^2 (hệ thức lượng) 

a: sin a=sin C=AB/BC

cos a=AC/BC=b/a

sin 2a=2sinacosa\(=2\cdot\dfrac{b}{a}\cdot\dfrac{AB}{BC}=\dfrac{2b\cdot AB}{a^2}\)

b: \(sin2a=sin\left(a+a\right)\)

\(=sina\cdot cosa+sina\cdot cosa\)

\(=2\cdot sina\cdot cosa\)

8 tháng 11 2021

a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\)

Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=9\)

b, \(\sin\alpha+\cos\alpha=1,4\Leftrightarrow\left(\sin\alpha+\cos\alpha\right)^2=1,96\)

\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha=1,96\\ \Leftrightarrow\sin\alpha\cdot\cos\alpha=\dfrac{1,96-1}{2}=\dfrac{0,96}{2}=0,48\)

\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha\cdot\cos^2\alpha\\ =1^2+2\left(\sin\alpha\cdot\cos\alpha\right)^2=1+2\cdot\left(0,48\right)^2=1,4608\)