K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

mình vẽ đc hình nhưng ko đưa vào đchum

Câu 1:a)Vì tam giác ABC cân tại A

=>B=ACD

Mà ACD=ECN(đối đỉnh)

=>B=ECN

Vì AB=AC(tam giác ABC cân tại A)

Mà AC=IC

=>AB=IC

Xét tam giác ABD và tam giác ICE có:

AB=IC(c/m trên)

B=ECN(c/m trên)

BD=CE(gt)

=>tam giác ABD=tam giác ICE(c.g.c)

Câu 2:Xét tam giác BMD và tam giác CEN có:

BDM=CNE(=90 độ)

BD=CE(gt)

B=ECN(c/m trên)

=>tam giác BDM=tam giác CEN(g.c.g)

=>BM=CN(2 cạnh tương ứng)

Có mấy dấu góc chưa viết,thông cảm nha!ok

23 tháng 1 2017

thanhk you very much!vui

9 tháng 8 2017

Để mai mk lm giờ pùn ngủ quá ^ ^

10 tháng 8 2017

humlimdimlimdimlimdimlimdim

14 tháng 4 2017

Nguyễn Thanh Xuân uh vui

14 tháng 4 2017

Bạn vào link này nha: https://hoc24.vn/hoi-dap/question/208608.html

5 tháng 3 2018

1)

+)  Ta thấy \(\widehat{ECI}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Mà \(\widehat{ACB}=\widehat{ABC}\)   (Tam giác ABC cân tại A)

nên \(\widehat{ECI}=\widehat{DBA}\)

Xét tam giác ABD và tam giác ICE có:

BD = CE (gt)

\(\widehat{DBA}=\widehat{ECI}\left(cmt\right)\)

CI = BA ( Cùng bằng AC)

\(\Rightarrow\Delta ABD=\Delta ICE\left(c-g-c\right)\)

+) Xét tam giác AEI, theo bất đẳng thức trong tam giác, ta có:

   AI > AE + EI

Lại có do \(\Delta ABD=\Delta ICE\Rightarrow AD=IE\)

Vậy nên ta có AI > AE + AD \(\Rightarrow2AC>AD+AE\Rightarrow AB+AC>AD+AE\)

2) Do \(\Delta ABD=\Delta ICE\Rightarrow\widehat{MBD}=\widehat{NCE}\)

Vậy thì ta thấy ngay \(\Delta BDM=\Delta CEN\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BM=CN\)

3) Ta thấy AB + AC = AM + MB + AC = AM + CN + AC = AM  + AN

Ta cần chứng minh BC < MN.

Do BD = EC nên AC = DE

Xét tam giác vuông MDO ta có DO < MO (Quan hệ đường vuông góc, đường xiên)

Ta cũng có OE < ON

Vậy nên DE < MN hay BC < MN

Từ đó: AB + AC + BC < AM + AN + MN

Hay \(P_{AMN}>P_{ABC}\) 

4 tháng 3 2018

1, a, Xét tam giác ABD và ICE có : 

BD=CE

AB=CI ( =AC )

góc ABD=ICE ( vì góc ABD=ACD mà ACD=ICE )

=> tam giác ABD=ICE ( c.g.c ) 

Sửa đề; AE là phân giác

a: Xét ΔABE và ΔADE có 

AB=AD
\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

Suy ra: BE=DE

b: Xét ΔEBK và ΔEDC có 

\(\widehat{BEK}=\widehat{DEC}\)

EB=ED

\(\widehat{EBK}=\widehat{EDC}\)

Do đó: ΔEBK=ΔEDC

c: ta có: AB=AD

EB=ED

DO đó:AE là đường trung trực của BD

Ta có: ΔAKC cân tại A

mà AE là đường phân giác

nên AE là đường trung trực của CK

17 tháng 1 2017

A B C E D

a) Vì \(\Delta\)ABC cân tại A

nên \(\widehat{ABC}\) = \(\widehat{ACB}\)

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (1)

Do AD = AE nên \(\Delta\)ADE cân tại A

=> \(\widehat{AED}\) = \(\widehat{ADE}\)

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{AED}\) + \(\widehat{ADE}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{AED}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{AED}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (2)

Từ (1) và (2) suy ra \(\widehat{ABC}\) = \(\widehat{AED}\)

mà 2 góc này ở vị trí đồng vị nên DE // BC.

b) Ta có: AE + EB = AB

AD + DC = AC

mà AE = AD; AB = AC (\(\Delta\)ABC cân tại A)

=> EB = DC

Lại có: \(\widehat{ABC}\) = \(\widehat{ACB}\)

hay \(\widehat{EBC}\) = \(\widehat{DCB}\)
Xét \(\Delta\)EBC và \(\Delta\)DCB có:
EB = DC (c/m trên)
\(\widehat{EBC}\) = \(\widehat{DCB}\) (c/m trên)
BC chung
=> \(\Delta\)EBC = \(\Delta\)DCB (c.g.c)
=> \(\widehat{BEC}\) = \(\widehat{CDB}\) = 90o
Do đó CE \(\perp\) AB.
17 tháng 1 2017

thank you so muchhaha