Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Do \(\triangle ABC \) cân ( \(AB=AC\) )
\(\Rightarrow \widehat{ABC} = \widehat{ACB}\)
Mà \(BE ; CF\) lần lượt là đường phân giác của \(\widehat{ABC} ; \widehat{ACB}.\)
\(\Rightarrow \widehat{ABE} = \widehat{ACF} \)
Xét \(\triangle ABE\) và \(\triangle ACF\) ta có :
\(AB = AC\) ( gt )
\(\widehat{ABC}\) chung
\(\widehat{ABE} = \widehat{ACF} \) ( cmt )
\(\Rightarrow \) \(\triangle ABE\) \(=\) \(\triangle ACF\) ( g.c.g )
a: Xét ΔABE và ΔACF có
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
=>HB=HC
mà AB=AC
nên AH là đường trung trực của BC
=>D là trung điểm của BC
Xét ΔABC có AF/AB=AE/AC
nên EF//BC
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G
=>AG vuông góc với DG => AG vuông góc với EF
-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)
=>góc AFE = góc AEF
-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)
b) Xét tam giác CFD và tam giác MBD:
+) FDC = MDB (đối đỉnh)
+) CD=BD (D là trung điểm BC)
+) FCD = DBM ( so le trong - BM //AC)
=> tam giác CFD = tam giác MBD
=> CF = BM ( hai cạnh tương ứng)
- tam giác BME cân tại B (cmt) => BM=BE
=> CF=BE
c)-DO là đường trung trực của cạnh BC => BO=CO
-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO
-Xét tam giác OCF và tam giác OBE:
+) BO=CO (cmt)
+) FO=EO (cmt)
+) CF=BE (cmt)
=> tam giác OCF=tam giác OBE (đpcm)
Gọi H là giao điểm của CF vs AB, K là trung điểm AH => DK//GH => KH/BH = DG/BG (1)
Mặt khác dễ thấy tg BCH cân tại B => BH = CB và theo tính chất phân giác ta có:
AE/CE = AB/CB = (AH + BH)/BH = AH/BH + 1 <=> AH/BH = AE/CE - 1 = (AE - CE)/CE = ((AD + DE) - (CD - DE))/CE = 2DE/CE (vì AD = CD)
<=> 2KH/BH = 2DE/CE <=> KH/BH = DE/CE (2)
Từ (1) và (2) => DE/CE = DG/BG => EG//BC mà DF//AB (do D; F là trung điểm của AC;CH) => DF đi qua trung điểm của BC => DF đi qua trung điểm EG (Ta lét(