K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2023

 

Xét △AMB và △ANC ta có:

AM=AN ( Vì M,N lần lượt là trung điểm của 2 cạnh AB, AC)

\(\widehat{A}\) là góc chung

AB=AC (Vì là hai cạnh bên trong tam giác cân)

\(\Rightarrow\Delta AMB=\Delta ANC\left(c-g-c\right)\)

\(\Rightarrow BM=CN\) (hai cạnh tương ứng) 

 

Xét ΔAMB và ΔANC có

AM=AN

góc A chug

AB=AC
=>ΔAMB=ΔANC

=>BM=CN

21 tháng 9 2023

Tham khảo:

a) Vì tam giác ABC cân tại A theo giả thiết. BM và CN là 2 đường trung tuyến nên M, N là 2 trung điểm của AC, AB.

Vì AB = AC (tính chất tam giác cân)

\( \Rightarrow \dfrac{{AB}}{2} = \dfrac{{AC}}{2} = AN = AM\)

Xét tam giác AMB và tam giác ANC ta có :

AM = AN (cmt)

AB = AC

Góc A chung

\( \Rightarrow \Delta AMB =\Delta ANC\)

\( \Rightarrow BM = CN\) ( 2 cạnh tương ứng )

b) Vì BM và CN là các đường trung tuyến

Mà I là giao điểm của BM và CN

\( \Rightarrow \) I là trọng tâm của tam giác ABC

\( \Rightarrow \) AI là đường trung tuyến của tam giác ABC hay AH đường là trung tuyến của tam giác ABC

\( \Rightarrow \) H là trung điểm của BC

18 tháng 5 2016

A B C G M N

 

vì tgiac ABC cân tại A

có BM và CN là trung tuyến=> AM=MC=AN=NB

a, xét tgiac BMC và tgiac CNB có:

BC là cạnh chung

góc B= góc C(gt)

BM=CN(cmt)

vậy tgiac BMC=Tgiac CNB(c.g.c)

b. xét tgiac AMN có AM=AN(cmt)

=> tgiac AMN cân tại đỉnh A

ta lại có tgiac ABC cân tại A 

Vậy góc ANM= góc ABC= (180-góc A):2

mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC

 

18 tháng 5 2016

c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC

mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC

mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)

28 tháng 8 2017

4 tháng 1 2023

dạ cảm ơn ạ

a: Xet ΔAHB và ΔAHC có

AH chung

HB=HC

AB=AC
=>ΔAHB=ΔAHC

b: Xét ΔNBC và ΔMCB có

NB=MC
góc NBC=góc MCB

CB chung

=>ΔNBC=ΔMCB

=>góc GBC=góc GCB

=>ΔGCB cân tại G

c: góc ECG+góc BCG=90 độ

góc GBC+góc GEC=90 độ

mà góc BCG=góc GBC

nên góc ECG=góc GEC
=>GC=GE=GB

=>G là trung điểm của BE
Xét ΔEBC có GD//CB

nên GD/CB=EG/EB=1/2

=>CB=2GD

a: Xét ΔBNC và ΔCMB có 

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó; ΔBNC=ΔCMB

b: Sửa đề: Cm ΔANM cân tại A

Xét ΔANM có AN=AM

nên ΔANM cân tại A

Xét ΔABM và ΔACN có

AB=AC
góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Mình xin phép sửa đề:

Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G

Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN

`------`

\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)

\(\text{CM | BM = CN}\)

\(\text{BM là đường trung tuyến}\)

`->`\(\text{MA = MC (1)}\)

\(\text{CN là đường trung tuyến}\)

`->`\(\text{NA = NB (2)}\)

`\Delta ABC` cân tại A

`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

`->`\(\text{NA = NB = MA = MC}\)

Xét `\Delta ABM` và `\Delta ACN`:

\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)

`=> \Delta ABM = \Delta ACN (c-g-c)`

`->`\(\text{BM = CN (2 cạnh tương ứng).}\)

loading...