Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AE=EB\\AD=DC\end{matrix}\right.\Rightarrow ED\) là đtb tam giác ABC
\(\Rightarrow ED=\dfrac{1}{2}BC;ED//BC\Rightarrow BEDC\) là hthang
\(b,\left\{{}\begin{matrix}EM=MB\\DN=NC\end{matrix}\right.\Rightarrow MN\) là đtb hthang BEDC
\(\Rightarrow MN//DE//BC;MN=\dfrac{DE+BC}{2}\)
Mà \(EM=MB\Rightarrow BI=ID\Rightarrow MI\) là đtb tam giác BED
\(\Rightarrow MI=\dfrac{1}{2}DE=0,5DE=\dfrac{1}{2}\cdot\dfrac{1}{2}BC=\dfrac{1}{4}BC=0,25BC\)
\(c,\) \(\left\{{}\begin{matrix}NK//ED\\DN=NC\end{matrix}\right.\Rightarrow EK=KC\Rightarrow KN\) là đtb tam giác EDC
\(\Rightarrow KN=\dfrac{1}{2}ED=MI\left(1\right)\)
\(IK=MN-MI-KN=\dfrac{ED+BC}{2}-\dfrac{ED}{2}-\dfrac{ED}{2}\\ =\dfrac{BC-DE}{2}=\dfrac{2DE-DE}{2}=\dfrac{DE}{2}=MI=KN\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow MI=IK=KN\)
\(d,IN=NK+KI=\dfrac{1}{2}DE+\dfrac{1}{2}DE=DE;IN//DE\left(MN//DE\right)\)
\(\Rightarrow EDNI\) là hbh nên \(EI=ND\)
Trong ∆ ABC ta có: E là trung điểm của cạnh AB
D là trung điểm của cạnh AC
Nên ED là đường trung bình của ∆ ABC
⇒ ED // BC và ED = 1/2 BC
(tính chất đường trung bình của tam giác)
+) Tứ giác BCDE có ED // BC nên BCDE là hình thang.
Trong hình thang BCDE, ta có: BC // DE
M là trung điểm cạnh bên BE
N là trung điểm cạnh bên CD
Nên MN là đường trung hình hình thang BCDE ⇒ MN // DE
(tính chất đường trung bình hình thang)
Trong ∆ BED, ta có: M là trung điểm BE
MI // DE
Suy ra: MI là đường trung bình của ∆ BED
⇒ MI = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)
Trong ∆ CED ta có: N là trung điểm CD
NK // DE
Suy ra: NK là đường trung bình của ∆ CED
⇒ NK = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)
IK = MN – (MI + NK) = 3/4 BC – (1/4 BC + 1/4 BC) = 1/4 BC
⇒ MI = IK = KN = 1/4 BC
Xin lỗi vì hình không được chính xác cho lắm.
a) Dễ thấy DE là đường trung bình nên DE // BC => Tứ giác BCDE là hình thang
b) Dễ thấy MN là đường trung bình do đó MN // ED (và BC nữa nhưng ở đây ko cần:v)
Ta có MN // ED -> MI // ED (1) . Mà M là trung điểm BE(2) . Từ (1) và (2) có ngay I là trung điểm BD.
Chứng minh tương tự (bạn tự chứng minh nhá) ta cũng có K là trung điểm CE.
c) Từ câu b) ta suy ra MI là đường trung bình nên \(MI=\frac{1}{2}ED\)
Tương tự \(KN=\frac{1}{2}ED\). Bây giờ phải chứng minh \(IK=\frac{1}{2}ED\) là xong . Tuy nhiên mình chưa nghĩ ra.
Làm tiếp:
c)Dễ thấy MK là đường trung bình (do từ câu b thì K là trung điểm EC)
Do đó \(MK=\frac{1}{2}BC\Leftrightarrow MI+IK=\frac{1}{2}BC\)
\(\Rightarrow IK=\frac{1}{2}BC-MI=\frac{1}{2}BC-\frac{1}{2}ED=\frac{1}{2}ED\) (do \(ED=\frac{1}{2}BC\))
Từ đây ta có thể suy ra đpcm.
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
Hình trên, đặt BC = a
Vì \(\Delta ABC\)có \(AE=EB;AD=DC\)nên \(ED\)là đường trung bình . Do đó ED song song BC và \(ED=\frac{BC}{2}=\frac{a}{2}\)
Do MN là đường trung bình của hình thang BEDC nên MN song song ED song song BC
\(\Delta BED\)có \(BM=ME;MI\)song song \(ED\)nên \(MI\)là đường trung bình , \(MI=\frac{ED}{2}=\frac{a}{4}\)
\(\Delta CED\)có \(CN=ND;NK\)song song \(ED\)nên \(NK\)là đường trung bình ,\(NK=\frac{ED}{2}=\frac{a}{4}\)
\(\Delta EBC\)có \(EM=MB;MK\)song song \(BC\)nên \(MK\)là đường trung bình ,\(MK=\frac{BC}{2}=\frac{a}{2}\)
\(\Rightarrow IK=MK-MI=\frac{a}{2}-\frac{a}{4}=\frac{a}{4}\)
Vậy \(MI=IK=KN\)