Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Xét \(\Delta BIC\) có: \(\widehat{BIC}+\widehat{B_1}+\widehat{C_1}=180^o\)
\(\Rightarrow135^o+\widehat{B_1}+\widehat{C_1}=180^o\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=45^o\)
\(\Rightarrow\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}=45^o\)
\(\Rightarrow\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)=45^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
Trong \(\Delta ABC\) có: \(\widehat{B}+\widehat{C}=90^o\Rightarrow\widehat{A}=90^o\)
\(\Rightarrow\Delta ABC\) vuông tại \(\widehat{A}\)
Vậy...
a: góc IBC=góc ABC/2
góc ICB=góc ACB/2
mà góc ABC=góc ACB
nên góc IBC=góc ICB
=>ΔICB cân tại I
b: AB=AC
IB=IC
=>AI là trung trực của BC
`a)`
có : BI là phan giác của góc `ABC`
`=> góc ABI = góc IBC = 1/2 góc ABC`
CI là phân giác của góc `ACB`
`=> góc ACI = góc ICB = 1/2 góc ACB`
Mà `góc ABC = góc ACB`(tam giác `ABC` cân)
`=> góc IBC = góc ICB`
`=>` tam giác ` BIC` cân
`b)`
Có :
tam giác `ABC` cân
`=> AB = AC `
`=> B` thuộc đường trung trực của BC (1)
lại có tam giác `BIC` cân
`=> BI = IC`
`=> I` thuộc đường trung trực của BC (2)
Từ `(1),(2) => AI` là đường trung trực của BC
Xét tam giác OCB: \(\widehat{OBC}+\widehat{OCB}=180^0-\widehat{BOC}=45^0\)
Mà OB,OC là p/g nên \(\widehat{OBC}+\widehat{OCB}=\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}=\dfrac{1}{2}\left(\widehat{ACB}+\widehat{ABC}\right)\)
\(\Rightarrow\widehat{ACB}+\widehat{ABC}=90^0\)
Xét tam giác ABC: \(\widehat{BAC}=180^0-\widehat{ACB}-\widehat{ABC}=180^0-\left(\widehat{ACB}+\widehat{ABC}\right)=90^0\)
Vậy ABC vuông tại A
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D
a: góc IBC=góc ABC/2
góc ICB=góc ACB/2
mà góc ABC=góc ACB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
b: AB=AC
IB=IC
=>AI là trung trực của BC
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF