K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

A B C G D E

BD < CE => 2/3 . BD < 2/3 . CE  (tính chất trọng tâm tam giác ) hay BG < CG

Trong tam giác BDC: góc GBC đối diện với cạnh GC; góc GCB đối diện với cạnh GB mà   GB < GC

=> góc GCB < GBC

1 tháng 5 2019

Xét tgiac ACE. ADB:

góc A chung 

D=E=90¤

AB=AC

=> Tgiac ACE==ABD (c-h-g-n)

=> BD=CE ( 2ctu) và AE=AD ( sử dụng cho cậu c))

b) BD giao CE tại G=> G là trực tâm tgiac ABC 

=> AG vuông góc với BC

c) Xét 2 t giác AEG=ADG ( c-h-c-g-v)

=>GE=GD(2ctu) =>GB=GC=> tgiac GBC cân tại B

4 tháng 3 2023

Câu này làm thế nào vậy mn

giúp mình với

 

4 tháng 3 2023

xét ΔECB và ΔDBC, ta có : 

EC = BD (gt)

\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)

BC là cạnh chung

=> ΔECB = ΔDBC (c.g.c)

=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)

vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)

9 tháng 4 2017

Hỏi đáp Toán

5 tháng 2 2022

undefined

28 tháng 8 2019

Ta có: \(BD< CE\left(gt\right)\)

=> \(\frac{2}{3}BD< \frac{2}{3}CE\) (tính chất trọng tâm của tam giác)

Hay \(BG< CG.\)

Trong \(\Delta BDC\)\(\widehat{GBC}\) đối diện với cạnh \(GC;\widehat{GCB}\) đối diện với cạnh \(GB.\)

\(GB< GC\left(cmt\right)\)

=> \(\widehat{GCB}< \widehat{GBC}\) (theo quan hệ giữa góc và cạnh đối điện trong tam giác)

Chúc bạn học tốt!