Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh được \(FI;KE\) là đtb tam giác AGB;AGC
Do đó \(FI=KE=\dfrac{1}{2}AG;FI//KE\left(//AG\right)\)
Vậy FEKI là hbh
Lời giải:
Vì $E, F$ lần lượt là trung điểm của $AC, AB$ nên $EF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$
$\Rightarrow EF=\frac{1}{2}BC$ và $EF\parallel BC$ (1)
Vì $K, I$ lần lượt là trung điểm $GC, GB$ nên $KI$ là đtb của tam giác $GBC$ ứng với cạnh $BC$
$\Rightarrow KI=\frac{1}{2}BC$ và $KI\parallel BC$ (2)
Từ $(1); (2)$ suy ra $EF\parallel KI$ và $EF=KI$
Tứ giác $FEKI$ có 2 cạnh đối $EF, KI$ song song và bằng nhau nên là hbh. Ta có đpcm.
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
EF đường trung bình của tam giác ABC => EF//BC (1)
IK là đường trung bình của tam giác BOC => IK//BC (2)
Từ (1) và (2) => EF//IK (*)
EK là đường trung bình của tam giác AOC => EK//AO (3)
IF là đường trung bình của tam giác AOB => IF//AO (4)
Từ (3) và (4) => EK//IF (**)
Từ (*) và (**) => Tứ giác EFIK là hình bình hành (đpcm)
EF đường trung bình của tam giác ABC => EF//BC (1)
IK là đường trung bình của tam giác BOC => IK//BC (2)
Từ (1) và (2) => EF//IK (*)
EK là đường trung bình của tam giác AOC => EK//AO (3)
IF là đường trung bình của tam giác AOB => IF//AO (4)
Từ (3) và (4) => EK//IF (**)
Từ (*) và (**) => Tứ giác EFIK là hình bình hành (đpcm)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~