K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB và ΔAEC có

góc A chung

AB=AC
góc ABD=góc ACE

=>ΔADB=ΔAEC

=>AD=AE

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

ED//BC

=>góc EDB=góc DBC

=>góc EDB=góc EBD

=>ED=EB

Xét tứ giác BEDC có

DE//BC

BD=CE

=>BEDC là hình thang cân

=>EB=DC=ED

c: Xét ΔOBC có góc OBC=góc OCB

nên ΔOBC cân tại O

=>OB=OC

OB+OD=BD

OC+OE=CE
mà OB=OC và BD=CE

nên OD=OE

=>ΔODE cân tạiO

6 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a) Xét (O) có 

\(\widehat{BEC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BEC}=90^0\)(Hệ quả góc nội tiếp)

Xét (O) có

\(\widehat{BFC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BFC}=90^0\)(Hệ quả góc nội tiếp)

Xét tứ giác BEFC có 

\(\widehat{BEC}=\widehat{BFC}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{BFC}\) là hai góc cùng nhìn cạnh BC

Do đó: BEFC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)