Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
Cho tam giác ABC vuông tại a . Điểm M bất kì trên AC . Kẻ CH vuông góc với tia BM tại H và tia BA tại O. Gọi I là trung điểm của BC . Qua M kẻ đường thẳng vuông góc với MI , cắt OB và OC thứ tự tại P và Q . Chứng minh M là trung điểm của PQ
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).a. C... - H
ctv thảo (giỏi toán của chta bên h :v) đã làm rồi. bạn nào cần thì click vào đường link xanh bên trên nhé
Gọi I là giao điểm của DE và AH.
Câu a) Ta dễ dàng chứng minh được ADHE là hình chữ nhật, sử dụng tính chất hình chữ nhật để suy ra \(\widehat{ADE}=\widehat{DAH}\)
Mà \(\widehat{DAH}=\widehat{C}\) (cùng phụ với góc ABC) nên suy ra \(\widehat{ADE}=\widehat{C}\)
Từ đó dễ dàng chứng minh được tam giác AED đồng dạng với tam giác ABC theo trường hợp góc - góc.
Câu b) Chắc là phải sử dụng lớp 9 sẽ nhanh hơn. Các bạn thử tìm thêm cách khác nhé
Chứng minh tứ giác ABNM nội tiếp suy ra \(\widehat{ANB}=\widehat{AMB}\)
Dễ dàng chứng minh được \(\widehat{AMB}=\widehat{ABC}=\widehat{AED}\)
Suy ra: \(\widehat{ANB}=\widehat{AED}\)và hai góc này ở vị trí đồng vị, suy ra: DE //BN
Câu 3. Sử dụng tỉ số đồng dạng hợp lí rồi suy ra kết quả
Ta dễ dàng chứng minh được: \(\Delta BDH\)\(\Delta BAC\).và tính được \(BD=\frac{DH.AB}{AC}\)
Chứng minh được: \(\Delta CEH\)\(\Delta CAB\).và tính được \(CE=\frac{EH.AC}{AB}\)
Chứng minh được: \(\Delta DHE\)\(\Delta BAC\).và suy ra được \(\frac{DH}{EH}=\frac{AB}{AC}\)
Suy ra: \(\frac{BD}{CE}=\frac{DH.AB}{AC}:\frac{EH.AC}{AB}=\frac{AB^2.DH}{AC^2.EH}=\frac{AB^2.AB}{AC^2.AC}\)
Vậy \(\frac{BD}{CE}=\frac{AB^3}{AC^3}\)
a) Chứng minh DK = 1/2 BC:
Vì I là trung điểm của DE và M là trung điểm của BC, nên ta có IM || DE và IM = 1/2 DE.Gọi H là trung điểm của DK. Vì H là trung điểm của DK nên DH = HK.Ta có DH = 1/2 DK (vì H là trung điểm của DK).Ta có HK = DH = 1/2 DK.Từ đó, ta có DK = 2HK = 2DH = 2IM = BC.b) Chứng minh KI vuông góc với ED:
Vì I là trung điểm của DE, nên IM là đường trung bình của tam giác BDE.Theo tính chất của đường trung bình, ta có KI là đường trung bình của tam giác BDE.KI chia DE thành hai phần bằng nhau, nên KI cũng là đường trung bình của tam giác BDE.Vì KI là đường trung bình của tam giác BDE, nên KI vuông góc với ED.c) Chứng minh AM vuông góc với OM:
Vì M là trung điểm của BC, nên AM là đường trung bình của tam giác ABC.Theo tính chất của đường trung bình, ta có AM vuông góc với BC.Vì M là trung điểm của BC, nên OM là đường trung tuyến của tam giác ABC.Theo tính chất của đường trung tuyến, ta có OM song song với AC.Vì AM vuông góc với BC và OM song song với AC, nên AM vuông góc với OM.Với các chứng minh trên, ta đã chứng minh được a), b) và c).
a: ΔDBC vuông tại D
mà DK là trung tuyến
nên DK=1/2BC
b: ΔEBC vuông tại E có EK là trung tuyến
nên EK=1/2BC
=>KE=KD
ΔKED cân tại K
mà KI là đường trung tuyến
nên KI vuông góc ED