K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

a) Gọi O là trung điểm của BC.

Theo tính chất trung tuyến ứng với cạnh huyền ta có:

EO=12BC;DO=12BC.EO=12BC;DO=12BC.

Suy ra OE=OD=OB=OC(=12BC)OE=OD=OB=OC(=12BC)

Do đó 4 điểm B, C, D, E cùng thuộc đường tròn (O) đường kính BC.

b) Xét đường tròn nói ở câu a), BC là đường kính, DE là một dây không qua tâm, do đó DE<BC.



18 tháng 12 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Gọi M là trung điểm của BC.

Để học tốt Toán 9 | Giải bài tập Toán 9

=> ME = MB = MC = MD

Do đó bốn điểm B, E, D, C cùng thuộc đường tròn tâm M. (đpcm)

b) Trong đường tròn tâm M nói trên, ta có DE là dây, BC là đường kính nên DE < BC.

28 tháng 4 2021

Lời giải chi tiết

a) Gọi OO là trung điểm của BC⇒OB=OC=BC2.BC⇒OB=OC=BC2.   (1)

Vì DODO là đường trung tuyến của tam giác vuông DBCDBC.

Theo tính chất trung tuyến ứng với cạnh huyền, ta có:  

             OD=12BCOD=12BC                                          (2)

Từ (1) và (2) suy ra OD=OB=OC=12BCOD=OB=OC=12BC

Do đó ba điểm B, D, CB, D, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Lập luận tương tự, tam giác BEC vuông tại E có EO là đường trung tuyến ứng với cạnh huyền BC nên OE=OB=OC=12BCOE=OB=OC=12BC

Suy ra ba điểm B, E, CB, E, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Do đó 4 điểm B, C, D, EB, C, D, E cùng thuộc đường tròn (O)(O) đường kính BCBC. 

b) Xét đường (O;BC2)(O;BC2), với BCBC là đường kính.

Ta có DEDE là một dây cung không đi qua tâm nên  ta có BC>DEBC>DE ( vì trong một đường tròn, dây lớn nhất là đường kính).

16 tháng 8 2021

a) Gọi \mathrm{M}M là trung điểm của \mathrm{BC}BC.

Ta có EM=\dfrac{1}{2} BC, DM=\dfrac{1}{2} BCEM=21BC,DM=21BC.

Suy ra ME=MB=MC=MDME=MB=MC=MD

do đó B, E, D, CB,E,D,C cùng thuộc đường tròn đường kính BCBC.

b) Trong đường tròn nói trên, DEDE là dây, BCBC là đường kính nên DE<BCDE<BC

14 tháng 12 2017

Gọi O là trung điểm của BC.

Xét tam giác BEC vuông tại E có EO là đường trung tuyến nên OE=OC=OB (1)

 Xét tam giác BCD vuông tại D có Do là đường trung tuyến nên OD=OC=OB (2)

Từ (1) và (2) Vậy OB=OD=OE=OC hay B, D, E ,C cùng thuộc một đường tròn. (đpcm)

7 tháng 8 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi M là trung điểm của BC.

Để học tốt Toán 9 | Giải bài tập Toán 9

=> ME = MB = MC = MD

Do đó bốn điểm B, E, D, C cùng thuộc đường tròn tâm M. (đpcm)

20 tháng 1 2021

A B C O E D

a) Gọi O là trung điểm của BC ( OB = OC )

+) Xét tam giác vuông EBC ( ^BEC = 90^o )

EO là đường trung tuyến

\(\Rightarrow EO=\frac{1}{2}BC\)

\(\Rightarrow OE=OB=OC\left(1\right)\)

+) Xét tam giác vuông DBC ( ^CDB = 90^o )

DO là đường trung tuyến \(\Rightarrow DO=\frac{1}{2}BC\)

=> DO = OB = OC (2)

Từ (1)(2) => OD = OE = OB = OC

Vậy : 4 điểm B , E , D , C cùng thuộc đường tròn đường trình BC ( đpcm )

11 tháng 11 2021

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

2 tháng 4 2019

a, B,C,D,E cùng thuộc đường tròn đường kính BC

b, BC là đường kính, ED dây không qua tâm => ĐPCM

a: Xét tứ giác AHCE có \(\hat{AHC}+\hat{AEC}=90^0+90^0=180^0\)

nên AHCE là tứ giác nội tiếp

=>A,H,C,E cùng thuộc một đường tròn

b: Sửa đề: Chứng minh BH=BD; DE là tiếp tuyến của đường tròn đường kính BC

Vì BC⊥AH tại H

nên BC là tiếp tuyến tại H của (A;AH)

Xét ΔAHB vuông tại H và ΔADB vuông tại D có

AB chung

AH=AD

Do đó: ΔAHB=ΔADB

=>BH=BD

Xét (O) có

BH,BD là các tiếp tuyến

Do đó: AB là phân giác của góc HAD

=>\(\hat{HAD}=2\cdot\hat{HAB}\)

Xét (O) có

CE,CH là các tiếp tuyến

Do đó: AC là phân giác của góc HAE
=>\(\hat{HAE}=2\cdot\hat{HAC}\)

\(\hat{DAE}=\hat{DAH}+\hat{EAH}\)

\(=2\cdot\left(\hat{HAB}+\hat{HAC}\right)=2\cdot\hat{BAC}=90^0\)

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

Gọi M là trung điểm của BC

=>M là tâm đường tròn đường kính BC

ΔABC vuông tại A

=>A nằm trên đường tròn đường kính BC

=>A nằm trên (M)

Ta có: BD⊥DE

CE⊥DE

Do đó: BD//CE

Xét hình thang BDEC có

M,A lần lượt là trung điểm của BC,DE

=>AM là đường trung bình của hình thang BDEC

=>AM//CE//BD

=>AM⊥DE tại A

=>ED là tiếp tuyến tại A của (M)

c:

Gọi X là giao điểm của EH và BD

Xét (A) có

ΔDHE nội tiếp

DE là đường kính

Do đó: ΔDHE vuông tại H

=>DH⊥EH tại H

=>DH⊥XE tại H

=>ΔDHX vuông tại H

Ta có: \(\hat{BHD}+\hat{BHX}=\hat{XHD}=90^0\)

\(\hat{BDH}+\hat{BXH}=90^0\) (ΔDHX vuông tại H)

\(\hat{BHD}=\hat{BDH}\)

nên \(\hat{BHX}=\hat{BXH}\)

=>BH=BX

mà BH=BD

nên BX=BD(1)

Ta có: HK⊥DE

XD⊥ED

Do đó: HK//XD

Xét ΔEDB có KI//DB

nên \(\frac{KI}{DB}=\frac{EI}{EB}\) (2)

Xét ΔEBX có IH//BX

nên \(\frac{IH}{BX}=\frac{EI}{EB}\) (3)

Từ (1),(2),(3) suy ra KI=HI

=>I là trung điểm của HK

21 tháng 8 2019

a, Hai tam giác BEC và BDC vuông cùng có cạnh BC là huyền, vì vậy E,D cùng thuộc đường tròn đường kính BC, tức là điểm B,D,E,C cùng thuộc đường tròn đường kính BC

b, Xét tam giác BEC vuông tại E có BC là cạnh huyền . do đó BC>CE. Chứng minh tương tự , suy ra BC>BD