K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ADH+góc AKH=180 độ

=>ADHK nội tiếp

b: góc BKC=góc BDC=90 độ

=>BKDC nội tiếp

=>góc AKD=góc ACB

Xét ΔAKD và ΔACB có

góc AKD=góc ACB

góc A chung

=>ΔAKD đồng dạng với ΔACB

8 tháng 5 2022

undefined

CHÚC EM HỌC TỐT NHÉhehe

a: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp

b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

c: Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

a: góc AFH+góc AEH=180 độ

=>AEHF nội tiếp

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc IBF=góc IEC

Xét ΔIBF và ΔIEC có

góc IBF=góc IEC

góc I chung

=>ΔIBF đồng dạng với ΔIEC

=>IB/IE=IF/IC

=>IB*IC=IE*IF

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE

19 tháng 3 2021
  

a, 

Tứ giác ADHK có ˆADH+ˆAKH=90+90=180oADH^+AKH^=90+90=180o

⇒⇒ ADHK là tứ giác nội tiếp.

b,

BM phân giác ˆABCABC^

⇒ˆABM=ˆMBC⇒ABM^=MBC^

⇒⌢AM=⌢MC⇒AM⌢=MC⌢ (2 góc nội tiếp chắn 2 cung)  

⇒ˆAOM=ˆMOC⇒AOM^=MOC^ (2 góc ở tâm cũng chắn 2 cung đó)

⇒⇒ OM phân giác ˆAOCAOC^ 

image

4 tháng 5 2016

a) tg AEHF co E=F=90( o vi tri goc doi)

nen AEHF la tg noi tiep

b) tớ chua ve hinh nên bạn tu lam neu k dc

tớ lam tiep

a: góc INC+góc IMC=180 độ

=>INCM nội tiếp

b: Xét ΔINB vuông tại N và ΔIMA vuông tại M có

góc NIB=góc MIA

=>ΔINB đồng dạng với ΔIMA

=>IN/IM=IB/IA

=>IN*IA=IM*IB

c: góc AIH=góc BIN=góc BCA

=>góc AIH=góc AHI

=>AI=AH

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC