K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

Do DE // BC

\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{AD}{AB}\)(Hệ quả Ta lét)

Mà AD=BM (gt)

Suy ra : \(\frac{AD}{AB}\)=\(\frac{BM}{AB}\)

\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{BM}{AB}\)

\(\Rightarrow\)DE=\(\frac{BC.BM}{AB}\)

Xét \(\Delta ABC\)có MN//BC

\(\frac{MN}{BC}\)=\(\frac{AM}{AB}\)(Hệ quả Talét)

\(\Rightarrow\)MN=\(\frac{BC.AM}{AB}\)

Suy ra DE+MN=\(\frac{BC.BM}{AB}\)\(\frac{BC.AM}{AB}\)

\(\Rightarrow\)DE+MN=\(\frac{BC.AB}{AB}\)= BC

Mà BC là đường cố định không đổi

\(\Rightarrow\)DE+MN không đổi

20 tháng 3 2018

tớ nghĩ bài này bn giải sai rùi

17 tháng 4 2022

a) △FKA và △AMC có: \(\widehat{FAK}=\widehat{ACM}\) (AK//CM); \(\widehat{AFK}=\widehat{CAM}\) (KF//AM).

\(\Rightarrow\)△FKA∼△AMC (g-g).

b) AK//DM, KD//AM \(\Rightarrow\)AKDM là hình bình hành\(\Rightarrow AK=DM;AM=DK\)

 \(\Rightarrow\dfrac{FK}{KD}=\dfrac{FK}{AM}\)

-△FKA∼△AMC \(\Rightarrow\dfrac{FK}{AM}=\dfrac{KA}{MC}\Rightarrow\dfrac{FK}{KD}=\dfrac{DM}{BM}\left(3\right)\).

-△ABM có: DE//AM \(\Rightarrow\dfrac{DM}{BM}=\dfrac{AE}{AB}\left(1\right)\)

-△BED có: AK//BD \(\Rightarrow\dfrac{AE}{AB}=\dfrac{EK}{KD}\left(2\right)\)

-Từ (1) (2) (3) suy ra \(\dfrac{FK}{KD}=\dfrac{EK}{KD}\Rightarrow FK=EK\Rightarrow\)K là trung điểm EF.

c) Qua E và F kẻ đg thẳng song song với AK cắt AM tại G,H.

-AK//EG, KE//AG \(\Rightarrow\)AKEG là hình bình hành \(\Rightarrow KE=AG\).

-AK//FH, KF//AH \(\Rightarrow\)AKFH là hình bình hành \(\Rightarrow KF=AH\).

\(\Rightarrow AG=AH\).

-DE//GH, EG//DM \(\Rightarrow\)DEGM là hình bình hành \(\Rightarrow DE=GM\).

-DF//MH, FH//DM \(\Rightarrow\)DFHM là hình bình hành \(\Rightarrow DF=HM\).

-\(DE+DF=GM+HM=AM-AG+AM+AH=2AM\) không đổi.

 

6 tháng 9 2017

A B C M N P Q I K D

Trên tia đối của MP lấy điểm D sao cho MP=MD.

Ta có: \(\Delta\)MBP=\(\Delta\)MCD (c.g.c) => BP=CD (2 cạnh tương ứng)

Mà BP=CQ => CD=CQ  => \(\Delta\)DCQ cân tại C => ^CQD= (1800-^DCQ)/2

=> ^MPB=^MDC (2 góc tương ứng) ở vị trí so le trong => AB//CD => ^DCQ=^IAK (Đồng vị) 

M là trung điểm PD, N là trung điểm PQ => MN là đường trung bình của \(\Delta\)PDQ

=> MN//DQ hay IK//DQ => ^CQD=^AKI (Đồng vị) 

 => \(\Delta\)AIK có: ^AKI= (1800-^IAK)/2 = (1800-^DCQ)/2 = ^CQD

=> Tam giác AIK cân tại A (đpcm)

8 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

28 tháng 12 2017

wefwef

30 tháng 7 2018

này cái bạn nguyễn xuân toàn kia bị gì thế ? họ là hỏi bài mà !

16 tháng 4 2022

-Bài khó.

-Bài này mình xem cách giải của bài khá tương đồng với bài này (do GV mình giải).

-OI cắt AC tại E, AD cắt CM tại F, qua M kẻ đường thẳng song song với AC cắt BN tại G.

\(\dfrac{AN}{NC}=\dfrac{AN}{MG}.\dfrac{MG}{NC}=\dfrac{AB}{BM}.\dfrac{OM}{OC}\)

\(\Rightarrow\dfrac{OM}{OC}=\dfrac{BM}{AB}.\dfrac{AN}{NC}=\dfrac{NC}{AB}.\dfrac{AN}{NC}=\dfrac{AN}{AB}\)

\(\Rightarrow\dfrac{CM}{OC}=\dfrac{AN+AB}{AB}\Rightarrow\dfrac{OC}{CM}=\dfrac{AB}{AN+AB}\)

\(\dfrac{MF}{CF}=\dfrac{AM}{AC}\Rightarrow\dfrac{CM}{CF}=\dfrac{AM+AC}{AC}=\dfrac{AB-BM+AN+NC}{AC}=\dfrac{AB+AN}{AC}\)

\(\Rightarrow\dfrac{OC}{CM}.\dfrac{CM}{CF}=\dfrac{AB}{AN+AB}.\dfrac{AN+AB}{AC}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{OC}{CF}=\dfrac{AB}{AC}\Rightarrow\dfrac{CE}{AC}=\dfrac{AB}{AC}\Rightarrow CE=AB\)

\(\dfrac{IC}{DC}=\dfrac{CE}{AC}=\dfrac{AB}{AC}=\dfrac{AD}{DC}\Rightarrow IC=AD\)

\(\Rightarrow IC+ID=BD+ID\Rightarrow CD=BI\)

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0