Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có AB và AC cắt nhau tại A nên tọa độ A là nghiệm hệ:
Ta có BH và AC vuông góc với nhau mà BH đi qua H (1;1) nên phương trình BH:
7(x-1) – 4( y-1) =0
Hay BH: 7x -4y – 3= 0
Có AB và BH cắt nhau tại B nên B( - 5; - 19/2 )
Phương trình BC nhận là VTPT và qua B
Suy r a (BC) : 1( x + 5) – 2( y+ 19/2) = 0 hay x- 2y -14 = 0
- toạ độ điểm A(0,3) => vecto ah (1;-2)
mà vecto ah vuông góc vecto bc => vecto chỉ phương ah = vecto pháp tuyến bc = (1;-2)
B thuộc AB => 5xb - 2yb = -6
C thuộc AC => 4xc + 7yc = 21
xc - xb = 1
yc - yb = -2
giải hệ 4 pt => toạ độ điểm B, C
- Có vecto pháp tuyến, điểm B(C) => viết phương trình đường thẳng
Trực tâm H là giao điểm của BH và AH ⇒ tọa độ H là nghiệm của hệ:
A là giao điểm của AB và AH nên tọa độ A là nghiệm của hệ phương trình:
B là giao điểm BH và AB nên tọa độ điểm B là nghiệm của hệ:
+ AC ⊥ HB, mà HB có một vtpt là (5; -4)⇒ AC nhận (4; 5) là một vtpt
AC đi qua
⇒ Phương trình đường thẳng AC: hay 4x + 5y – 20 = 0.
+ CH ⊥ AB, AB có một vtpt là (4; 1) ⇒ CH nhận (1; -4) là một vtpt
CH đi qua
⇒ Phương trình đường thẳng CH: hay CH: 3x – 12y - 1 = 0.
+ BC ⊥ AH , mà AH nhận (2; 2) là một vtpt
⇒ BC nhận (1; -1) là một vtpt
BC đi qua B(3; 0)
⇒ Phương trình đường thẳng BC: 1(x - 3) – 1(y – 0) = 0 hay x – y – 3 = 0.
Ta có, AB và AC cắt nhau tại A nên tọa độ đỉnh A là nghiệm của hệ phương trình :
x − 3 y − 1 = 0 5 x − 2 y + 1 = 0 ⇒ A − 5 13 ; − 6 13
Đường thẳng BC có VTPT n B C → ( 1 ; 3 ) .
Vì A H ⊥ B C nên đường thẳng AH nhận vecto n B C → ( 1 ; 3 ) làm VTCP, một VTPT của AH là: n A H → ( 3 ; − 1 )
Phương trình đường cao AH của tam giác là:
3 x + 5 13 − y + 6 13 = 0 ⇔ 39 x − 13 y + 9 = 0
ĐÁP ÁN B
Giả sử phương trình AC là 2x-5y+6=0 và pt BC là 4x+7y-21=0
Phương trình đường cao AH qua H và vuông góc BC:
\(7\left(x-0\right)-4\left(y-0\right)=0\Leftrightarrow7x-4y=0\)
Pt đường cao BH qua H vuông AB: \(2x+5y=0\)
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}2x-5y+6=0\\7x-4y=0\end{matrix}\right.\) \(\Leftrightarrow A\left(-4;-7\right)\)
Tọa độ B là nghiệm \(\left\{{}\begin{matrix}4x+7y-21=0\\2x+5y=0\end{matrix}\right.\) \(\Rightarrow B\left(\dfrac{35}{2};-7\right)\)
Phương trình AB: \(y+7=0\)
Đáp án :D
+Ta có hai đường thẳng AB và AC cắt nhau tại A nên tọa độ điểm A là nghiệm hệ phương trình:
5 x - 2 y + 6 = 0 4 x + 7 y - 21 = 0 → A ( 0 ; 3 ) v à A H → ( 1 ; - 2 )
+Ta có BH vuông góc với AC nên đường thẳng BH qua H(1;1) và nhận vecto u → ( 4 ; 7 ) làm VTCP và u → ( 7 ; - 4 ) làm VTPT
Suy ra phương trình đường thẳng BH là:
7( x-1) – 4( y-1) =0
=> 7x- 4y -3= 0
+ ta có AB và BH cắt nhau tại B nên tọa độ điểm B là nghiệm hệ phương trình:
+Phương trình BC nhận A H → ( 1 ; - 2 ) là VTPT và qua B ( - 5 ; - 19 2 )
Suy ra phương trình (BC) :
Hay x-2y-14= 0 .