K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

A B C d2 d1 H

A = AB giao d1=> Tọa độ A là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x+1=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x=-1\\y=\frac{1+4x}{3}\end{cases}\)<=> \(\begin{cases}x=-1\\y=-1\end{cases}\)=> A (-1; -1)

Đường thẳng d2 có vtpt là \(\vec{n_2}\left(7;2\right)\) chính là vtcp của đường thẳng AC , điểm A thuộc AC

=> Phương trình đường thẳng AC có dạng: \(\begin{cases}x=-1+7t\\y=-1+2t\end{cases}\)(t \(\in\) R)

Gọi H = d1 \(\cap\) d2 => tọa độ H là nghiệm của pt: \(\begin{cases}7x+2y-22=0\\4x-3y+1=0\end{cases}\) <=> \(\begin{cases}x=\frac{64}{29}\\y=\frac{95}{29}\end{cases}\)=> H (\(\frac{64}{29};\frac{95}{29}\))

Đường cao CH  đi qua H và có vtcp chính là vtpt của  AB  là \(\vec{n}\) (5; -3) 

=> Phương trình CH có dạng : \(\begin{cases}x=\frac{64}{29}+5t\\y=\frac{95}{29}-3t\end{cases}\) 

B = AB \(\cap\) d2 => Tọa độ B là nghiệm của hệ :  \(\begin{cases}5x-3y+2=0\\7x+2y-22=0\end{cases}\) <=> \(\begin{cases}x=2\\y=4\end{cases}\)=> B (2;4)

Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là \(\vec{n_1}\)(4;-3)

=> phương trình đường thẳng BC là: \(\begin{cases}x=2+4t\\y=4-3t\end{cases}\)

23 tháng 1 2018

chỉ bài này mk với

14 tháng 8 2017

15 tháng 6 2017

Đáp án A

Phân tích.

- Ta thấy A thuộc đường phân giác trong góc A: x - 3 y + 5 = 0 giờ chỉ cần viết được phương trình AC là tìm được A.

- Trên AC đã có một điểm N, cần tìm thêm một điểm nữa. Chú ý khi lấy M’ đối xứng với M qua phân giác trong ta có M’ thuộc cạnh AC.

- Tìm M’ viết được phương trình AC t đó suy ra A. Có A, M viết được phương trình AB.

- Gọi B, C và tham số hóa dựa vào B thuộc AB, C thuộc AC. Áp dụng công thức trọng tâm sẽ tìm ra được tọa độ B, C.

Hướng dẫn giải.

Gọi M ' ∈   A C  là điểm đối xứng của M qua phân giác trong góc A, gọi I là giao điểm của MM' với phân giác trong góc A → I là trung điểm MM’.

Phương trình MM’ là:  3 x + y - 11 = 0

Toạ độ điểm I là nghiệm của hệ:

M’ đối xứng với M qua  

Đường thẳng AC qua N và M’ nên có phương trình:

Tọa độ A là nghiệm của hệ: 

 

Đường thẳng AB đi qua A, M nên có phương trình:

x + y - 3 = 0

Gọi 

Do G là trọng tâm tam giác ABC nên ta có:

 

Vậy tọa độ các đỉnh của tam giác ABC là:

11 tháng 4 2019

31 tháng 1 2018

6 tháng 3 2023

Tại sao lại ra được x+6y+9 ạ

 

 

26 tháng 2 2016

ta có pt đường cao kẻ từ B:(d1) x+3y-5=0 
vì AC _|_ (d1) và AC đi qua C(-1; -2) 
=> pt AC: 3(x+1) -(y+2) =0 
<=> 3x -y + 1=0 
ta có A là giao điểm của AC và đg trung tuyến (d2) kẻ từ A 
=> A là nghiệm của hệ: 
{ 5x+y-9=0 
{ 3x -y + 1=0 
<=> 
x=1 ; y=4 
=> A( 1;4) 

Vì B ∈ (d1) => B(5- 3y; y) 
gọi I là trung điểm BC => I ∈ (d2) 
Vì I là trung điểm BC 
=> 
{ 2xI = xB + xC 
{ 2yI = yB + yC 
<=> 
{ xI= (5-3y-1)/2 = (4-3y)/2 
{ yI= (y -2)/2 

Vì I ∈ (d2) 
=> 5(4-3y)/2 + (y -2)/2 -9 =0 
<=> y= 0 
=> B( 5; 0) 
Vậy A( 1;4) và B( 5; 0)

19 tháng 7 2018

Ta có pt đường cao kẻ từ B: (d1) x+3y-5=0
Vì AC _|_ (d1) và AC đi qua C(-1; -2)
=> pt AC: 3(x+1) -(y+2) =0
<=> 3x -y + 1=0
Ta có A là giao điểm của AC và đường trung tuyến (d2) kẻ từ A
=> A là nghiệm của hệ:
{ 5x+y-9=0
{ 3x -y + 1=0
<=>
x=1 ; y=4
=> A( 1;4)

Vì B ∈ (d1) => B(5- 3y; y)
Gọi I là trung điểm BC => I ∈ (d2)
Vì I là trung điểm BC
=>
{ 2xI = xB + xC
{ 2yI = yB + yC
<=>
{ xI= (5-3y-1)/2 = (4-3y)/2
{ yI= (y -2)/2

Vì I ∈ (d2)
=> 5(4-3y)/2 + (y -2)/2 -9 =0
<=> y= 0
=> B( 5; 0)
Vậy A( 1;4) và B( 5; 0)

6 tháng 12 2018

Đáp án là B

Điểm C thuộc đường trung tuyến CM nên gọi tọa độ điểm C(x;-x;-1)

19 tháng 4 2018

Đáp án C

12 tháng 7 2019

Chọn A