K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBED và ΔBEC có 

BD=BC(gt)

\(\widehat{DBE}=\widehat{CBE}\)(BE là tia phân giác của \(\widehat{DBC}\))

BE chung

Do đó: ΔBED=ΔBEC(c-g-c)

Xét ΔBDI và ΔBCI có

BD=BC(gt)

\(\widehat{DBI}=\widehat{CBI}\)(BI là tia phân giác của \(\widehat{DBC}\))

BI chung

Do đó: ΔBDI=ΔBCI(c-g-c)

⇒ID=IC(hai cạnh tương ứng)

b) Sửa đề: Chứng minh AH//BI

Xét ΔBDC có BD=BC(gt)

nên ΔBDC cân tại B(Định nghĩa tam giác cân)

Ta có: ΔBDC cân tại B(cmt)

mà BI là đường phân giác ứng với cạnh đáy DC(gt)

nên BI là đường cao ứng với cạnh DC(Định lí tam giác cân)

⇒BI⊥DC

Ta có: AH⊥DC(gt)

BI⊥DC(cmt)

Do đó: AH//BI(Định lí 1 từ vuông góc tới song song)