Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
a) tam giác ABC vuông tại A có:
AB2 + AC2 = BC2 (định lý py-ta-go)
=> 82 + AC2 = 102
=> AC2 = 102 - 82 = 36
=> AC = 6 (cm)
t i c k nha!!! 5645746775675687890890685674562451234142342334543
a)
áp dụng định lí py-ta-go, ta có:
AC2=BC2-AB2=102-82=36
AC=6
a:
Xét tam giác AHC và tam giác EHC có:
HA=HE(gt)
BA(chung)
CHA=CHE=90*
=> tam giác AHC=EHC(c.g.c)
=> AC=EC
xét tam giác AMC và tam giác DMB có:
MC=MB(gt)
MA=MD(gt)
góic CMA=DMB(đối đỉnh)
=> tam giác AMC= DMB(c.g.c)
=> AC=DB
AC=CE
=> CE=BD
b:
MC=MB(gt)
MA=MD(gt)
CMA=BMD
=> AMC=DMB(c.g.c)