K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

góc AyB=90o là sao nhỉ?

NV
9 tháng 3 2021

Câu 1 đề thiếu, điểm C thỏa mãn điều gì nữa? (ví dụ G là trọng tâm tam giác?)

Câu 2:

Do B, C đều thuộc d nên tọa độ có dạng: \(B\left(2b-3;b\right);C\left(2c-3;c\right)\) với \(b\ne c\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2c-2;c-2\right)\\\overrightarrow{BC}=\left(2c-2b;c-b\right)\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\AC=3BC\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2c-2\right)\left(2c-2b\right)+\left(c-2\right)\left(c-b\right)=0\\\left(2c-2\right)^2+\left(c-2\right)^2=9\left(2c-2b\right)^2+9\left(c-b\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4c-4+c-2=0\\\left(2c-2\right)^2+\left(c-2\right)^2=45\left(c-b\right)^2\end{matrix}\right.\)

\(\Rightarrow...\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Gọi tọa độ của điểm D là \(\left( {x;y} \right)\) ta có:  \(\overrightarrow {AB}  = \left( {1;3} \right)\), \(\overrightarrow {DC}  = \left( {5 - x;5 - y} \right)\)

Để ABCD là hình bình hành thì \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \)

Suy ra \(\left\{ \begin{array}{l}5 - x = 1\\5 - y = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\)

Vậy để ABCD là hình bình hành thì tọa độ điểm D là \(D\left( {4;2} \right)\)

b) Gọi M  là giao điểm của hai đường chéo, suy ra M là trung điểm của AC

Suy ra: \({x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2};{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2}\)

Vậy tọa đọ giao điểm của hai đường chéo hình bình hành ABCD  là \(M\left( {\frac{7}{2};\frac{7}{2}} \right)\)

c) Ta có: \(\overrightarrow {AB}  = \left( {1;3} \right),\overrightarrow {AC}  = \left( {3;3} \right),\overrightarrow {BC}  = \left( {2;0} \right)\)

Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {3^2}}  = \sqrt {10} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2 \)

            \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{2^2} + {0^2}}  = 2\)

            \(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{1.3 + 3.3}}{{\sqrt {10} .3\sqrt 2 }} = \frac{{2\sqrt 5 }}{5} \Rightarrow \widehat A \approx 26^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{\left( { - 1} \right).2 + \left( { - 3} \right)0}}{{\sqrt {10} .2}} =  - \frac{{\sqrt {10} }}{{10}} \Rightarrow \widehat B = 108^\circ 26'\\\widehat C = 180^\circ  - \widehat A - \widehat B = 180^\circ  - 26^\circ 33' - 108^\circ 26' = 45^\circ 1'\end{array}\)

7 tháng 4 2016

I C M A D B

Do \(\widehat{AIB}=90^0\Rightarrow\widehat{ACB}=45^0\) hoặc \(\widehat{ACB}=135^0\Rightarrow\widehat{ACD}=45^0\Rightarrow\Delta ACD\) vuông cân tại D nên DA=DC

Hơn nữa IA=IC => \(DI\perp AC\Rightarrow\) đường thẳng AC thỏa mãn điều kiện AC qua điểm M và AC vuông góc ID.

Viết phương trình đường thẳng AC : \(x-2y+9=0\)

Gọi \(A\left(2a-9;a\right)\in AC\). Do \(DA=\sqrt{2}d\left(D,AC\right)=2\sqrt{10}\) nên

\(\sqrt{\left(2a-8\right)^2+\left(a+1\right)^2}=2\sqrt{10}\Leftrightarrow a^2-6a+5=0\)

                                                  \(\Leftrightarrow\begin{cases}a=1\Rightarrow A\left(-7;1\right)\\a=5\Rightarrow A\left(1;5\right)\end{cases}\)

Theo giả thiết đầu bài \(\Rightarrow A\left(1;5\right)\)

Viết phương trình đường thẳng DB : \(x+3y+4=0\). Gọi \(B\left(-3b-4;b\right)\)

Tam giác IAB vuông tại I nên : \(\overrightarrow{IA.}\overrightarrow{IB}=0\Leftrightarrow3\left(-3b-2\right)+4\left(b-1\right)=0\Leftrightarrow b=-2\Rightarrow B\left(2;-2\right)\)

Đáp số \(A\left(1;5\right);B\left(2;-2\right)\)

a: \(AB=\sqrt{\left(2+1\right)^2+\left(1-1\right)^2}=3\)

\(BC=\sqrt{\left(-1-2\right)^2+\left(-3-1\right)^2}=5\)

\(AC=\sqrt{\left(-1+1\right)^2+\left(-3-1\right)^2}=4\)

=>C=3+4+5=12

b: Tọa độ trọng tâm là:

\(\left\{{}\begin{matrix}x=\dfrac{-1+2-1}{3}=0\\y=\dfrac{1+1-3}{3}=-\dfrac{1}{3}\end{matrix}\right.\)

c: ABCD là hình bình hành

=>vecto AB=vecto DC

=>-1-x=2-(-1)=3 và -3-y=1-1=0

=>x=-4 và y=-3

I
3 tháng 2 2023

a) Ta có :

\(\overrightarrow{AB}=3\\ \overrightarrow{BC}=5\\ \overrightarrow{AC}=4\)

Chu vi tam giác là : 

AB + BC + AC = 3 + 4 + 5 = 12

b) Toạ độ trọng tâm của tam giác ABC là :

\(\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(\dfrac{-1+2+\left(-1\right)}{3};\dfrac{1+1+\left(-3\right)}{3}\right)=\left(0;-\dfrac{1}{3}\right)\)

c) Cho điểm D ( x ; y )

Để tứ giác ABCD là hình bình hành thì :

\(\overrightarrow{AD}=\overrightarrow{BC}\)

\(\Leftrightarrow\left(x+1;y-1\right)=\left(-3;-4\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\y=-3\end{matrix}\right.\)

Vậy với D ( -4 ; -3 ) thì tứ giác ABCD là hình bình hành

 

vecto AB=(-7;0)

vecto DC=(3-x;5-y)

Vì ABCD là hình bình hành

nên vecto AB=vecto DC

=>3-x=-7; 5-y=0

=>x=10; y=5

21 tháng 7 2017

a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)

vậy C (-2y -1 ; y ).

tam giác ABC cân tại C khi và chỉ khi

CA = CB \(\Leftrightarrow\) CA2 = CB2

\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2

\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2

giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)

vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)

b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :

\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2

\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17

\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)

vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)

8 tháng 8 2016

Do G thuộc d nên G(t,1-2t)

tìm A thông wa ẩn của G

SABC=\(\frac{1}{2}\cdot d_{\left(A,BC\right)}\cdot BC\) 

Suy ra ẩn t =>A(...)

8 tháng 8 2016

gọi G(g;1-2g)

ta có Sabc=5/2 => Sgbc=5/6(vì g là trọng tâm nên Sgbc=1/3Sabc)

<=> 1/2.d(G;bc).BC=5?6 => G(?;?)

gọi M là trung điểm BC. => M(?;?) ta lại có vtAG=2/3vtAM => A(?;?)

CHÚC BẠN HỌC TỐT :)