K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

nữa chu vi tgABC là

(24+13+15)/2 = 24,5cm

áp dụng ct heron ta có diện tích tam giác ABC là

\(\sqrt{24,5\left(24,5-24\right)\left(24,5-13\right)\left(24,5-12\right)}\approx41,9635cm\)

ta có ct tính bk đg tròn nội tiếp

\(r=\dfrac{S}{p}\approx\dfrac{41,9635}{24.5}\approx1,7128cm\)

5 tháng 5 2019

Nhận xét: Tam giác ABC có a2 + b2 = c2 nên vuông tại C.

Giải bài 10 trang 62 sgk Hình học 10 | Để học tốt Toán 10

+ Diện tích tam giác: S = 1/2.a.b = 1/2.12.16 = 96 (đvdt)

+ Chiều cao ha: ha = AC = b = 16.

+ Tâm đường tròn ngoại tiếp tam giác là trung điểm của AB.

Bán kính đường tròn ngoại tiếp R = AB /2 = c/2 = 10.

+ Bán kính đường tròn nội tiếp tam giác: S = p.r ⇒ r = S/p.

Mà S = 96, p = (a + b + c) / 2 = 24 ⇒ r = 4.

+ Đường trung tuyến ma:

ma2 = (2.(b2 + c2) – a2) / 4 = 292 ⇒ ma = √292.

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
10 tháng 3 2022

\(\widehat{A}=180^o-30^o-44^o=106^o.\)

Áp dụng định lý sin ta có:

\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}.\)

\(\Rightarrow\dfrac{BC}{sin106^o}=\dfrac{7}{sin44^o}=\dfrac{AB}{sin30^o}.\)

\(\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{7.sin106^o}{sin44^o}\approx9,7.\\AB=\dfrac{7.sin30^o}{sin44^o}\approx5,0.\end{matrix}\right.\) (đvđd).

\(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\sin A\approx\dfrac{1}{2}.5,0.7.\sin106^o\approx17,4\) (đvdt).

 \(S=pr=\dfrac{AB+AC+BC}{2}.r.\\ \Rightarrow17,4\approx\dfrac{5,0+7+9,7}{2}.r.\) 

\(\Rightarrow r\approx1,6\) (đvđd).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có: \(p = \frac{{a + b + c}}{2} = \frac{{15 + 20 + 25}}{2} = 30\)

Áp dụng công thức heron, ta có:  \(S = \sqrt {30.(30 - 15).(30 - 20).(30 - 25)}  = 150\)

b) Ta có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{15.20.25}}{{4.150}} = 12,5.\)

18 tháng 4 2022

Ta sẽ tính `S_[\triangle ABC]` trước

`p = [ AB + AC + BC ] / 2 = [ 14 + 10 + 8 ] / 2 = 16`

 `=> S_[\triangle ABC] = \sqrt{p ( p - AB ) ( p - AC ) ( p - BC ) } = 16\sqrt{6}`

Ta có: `S_[\triangle ABC] = [ AB . AC . BC ] / [ 4R]`

     `=> R = [35\sqrt{6}] / 12`

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Áp dụng định lí cosin, ta có:

 \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)

b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)

c) 

+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)

+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)

NV
18 tháng 3 2021

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)

\(\Rightarrow A\approx92^0\)

\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)

\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)

\(r=\dfrac{S}{p}=\dfrac{80}{31}\)

10 tháng 10 2023

loading...  loading...  

8 tháng 2 2021

ko có đáp án bạn ạ