K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

\(a,\left\{{}\begin{matrix}AE=EB\\AD=DC\end{matrix}\right.\Rightarrow ED\) là đtb tam giác ABC

\(\Rightarrow ED=\dfrac{1}{2}BC;ED//BC\Rightarrow BEDC\) là hthang

\(b,\left\{{}\begin{matrix}EM=MB\\DN=NC\end{matrix}\right.\Rightarrow MN\) là đtb hthang BEDC

\(\Rightarrow MN//DE//BC;MN=\dfrac{DE+BC}{2}\)

Mà \(EM=MB\Rightarrow BI=ID\Rightarrow MI\) là đtb tam giác BED

\(\Rightarrow MI=\dfrac{1}{2}DE=0,5DE=\dfrac{1}{2}\cdot\dfrac{1}{2}BC=\dfrac{1}{4}BC=0,25BC\)

\(c,\) \(\left\{{}\begin{matrix}NK//ED\\DN=NC\end{matrix}\right.\Rightarrow EK=KC\Rightarrow KN\) là đtb tam giác EDC

\(\Rightarrow KN=\dfrac{1}{2}ED=MI\left(1\right)\)

\(IK=MN-MI-KN=\dfrac{ED+BC}{2}-\dfrac{ED}{2}-\dfrac{ED}{2}\\ =\dfrac{BC-DE}{2}=\dfrac{2DE-DE}{2}=\dfrac{DE}{2}=MI=KN\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow MI=IK=KN\)

\(d,IN=NK+KI=\dfrac{1}{2}DE+\dfrac{1}{2}DE=DE;IN//DE\left(MN//DE\right)\)

\(\Rightarrow EDNI\) là hbh nên \(EI=ND\)

20 tháng 9 2020

1)\(\Delta\)ABC có E là trung điểm của AB, D là trung điểm của AC nên ED là đường trung bình của tam giác => ED//BC

Tứ giác EDCB có ED//BC nên là hình thang (đpcm)

2) Hình thang EDCB có M, N lần lượt là trung điểm của BE và CD nên MN là đường trung bình của hình thang => MN // ED hay \(\hept{\begin{cases}NK//ED\\MI//ED\end{cases}}\)

\(\Delta\)BED có M là trung điểm của BE và MI//ED nên I là trung điểm của BD

Tương tự ta suy ra được K là trung điểm của CE

c) Ta có: IK = IN  - KN = 1/2BC - 1/2ED = \(\frac{BC-ED}{2}=\frac{BC-\frac{BC}{2}}{2}=\frac{\frac{BC}{2}}{2}=\frac{BC}{4}\)

\(KN=MI=\frac{ED}{2}=\frac{\frac{BC}{2}}{2}=\frac{BC}{4}\)

Từ đó suy ra MI = IK = KN (đpcm)

24 tháng 9 2018

Con tham khảo tại link dưới đây nhé:

Câu hỏi của Dương Ánh Ngọc - Toán lớp 8 - Học toán với OnlineMath

4 tháng 10 2016

:a,nối E với D,ED là đường trung bình nên ED=4cm 
MN là đường trung bình hình thang BEDC nên MN=(8+4):2=6 
b,vì MI // ED và M là trung điểm BE => MI là đường trung bình ∆BED 
MI=1/2 ED,tương tự ta có KN=MI=1/2 ED (*) 
vì ED=1/2 BC mà ∆EDG∞∆IKG∞CBG(G là giao 2 tiếp tuyến) 
nên IK=1/2 ED <=> kết hợp với(*)ta có KN=MI=IK=1/2ED 
Bài2:gọi đoạn nối trung điểm 2 cạnh AB và AC của tứ giác ABCD là MN,ta có MN=1/2 BC,trong ∆BCD có BC<BD+CD nên MN< BD+CD(bất đẳng thức tam giác) 
Bai3:gọi tứ giác đó là ABCD,MN là cạnh nối trung điểm,kéo dài AN giao DC tại E,ta có AB=CE ,nên ta có ∆ABN=∆CEN =>gocBAN=góc CEN.Mà 2 góc nằm ở vị trí so le trong nên AB // DC => ABCD là hình thang. 
Bai4:a,kẻ BK // AD,ta có hình bình hành ABKD =>IE là hiệu 2 đáy,kẻ đường cao BH',ta có ∆BCH'=∆ADH,mà ∆BIE cân nên H' là trung điểm IE =>HD=1/2(DE-AB) 
b,kẻ BG // với AC,ta có hình bình hành ABGC =>AB=CG 
vì ABH'H là hình vuông=>AB=HH'=>HH'=CG mà H'C=DH nên ta có 
HH'+H'C=CG+DH mà (HH'+H'C)+(CG+DH)=DG=DC+AB 
=>HH'+H'C=HC=1/2(DC+AB) 
Bài5:Từ M kẻ MM' vuông góc với d,ta có MM'//BB'//CC' 
mà M là trung điểm BC nên MM' là đường trung bình hình thang BB'C'C,ta lại có O là trung điểm AM=>∆AA'O=∆MM'O nên AA'=MM' 
ta có MM'=AA'=(BB'+CC'):2 
Bài6:Kẻ MN//AB//DC =>MN=(7+3)/2=5 =>∆ANM và∆DNM cân tại N 
góc AMN=(180độ-gócANM)/2 
góc DMN=(180độ-gócDNM)/2 
góc AMN+góc DMN=(180độ-gócANM+180độ-gócDNM)/2 
=(360độ-180độ)/2=90độ=gócAMD=>AM vuông góc với DM 
còn 3 bài cuối bác nào khỏe tay thì giúp cháu nó hộ em với,em mỏi tayquá rồi 
Chi tiết thêm: 
lâu lắm mới vào lại câu này 
Bài7:từ C kẻ đường vuông góc với BE tại M 
kéo dài CM giao AB tại N 
Ta có ∆CME đồng dạng với ∆CAN (gg) 
=>góc CEM= góc CNA 
vì góc CEM= góc AEB (đối đỉnh) 
=> góc CNA= góc AEB 
=>∆CAN=∆BAE(góc nhọn,cạnh góc vuông,góc 90º) 
=>AE=AN=AD 
vì AN=AD 
mà AK // CN 
=> AK là đường trung bình hình thang CIDN 
=>IK=KC 

5 tháng 10 2016

cam on ban nha

13 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong ∆ ABC ta có: E là trung điểm của cạnh AB

D là trung điểm của cạnh AC

Nên ED là đường trung bình của  ∆ ABC

⇒ ED // BC và ED = 1/2 BC

(tính chất đường trung bình của tam giác)

+) Tứ giác BCDE có ED // BC nên BCDE là hình thang.

Trong hình thang BCDE, ta có: BC // DE

M là trung điểm cạnh bên BE

N là trung điểm cạnh bên CD

Nên MN là đường trung hình hình thang BCDE ⇒ MN // DE

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

(tính chất đường trung bình hình thang)

Trong  ∆ BED, ta có: M là trung điểm BE

MI // DE

Suy ra: MI là đường trung bình của  ∆ BED

⇒ MI = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

Trong  ∆ CED ta có: N là trung điểm CD

NK // DE

Suy ra: NK là đường trung bình của  ∆ CED

⇒ NK = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

IK = MN – (MI + NK) = 3/4 BC – (1/4 BC + 1/4 BC) = 1/4 BC

⇒ MI = IK = KN = 1/4 BC

31 tháng 8 2017

Giải

Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\)   là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì 

\(MI=KN=\frac{DE}{2}\left(1\right)\)

\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)

\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)

\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)

12 tháng 9 2017

[​IMG]
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha