K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Ta có :

Ba đường trung tuyến AX , BY , CZ

=> X , Y , Z là các trung điểm ứng với BC , AC , AB

Theo tính chất đường trung bình ,ta có :

XY = \(\dfrac{1}{2}AB=AZ=BZ\)

YZ = \(\dfrac{1}{2}BC=BX=CX\)

ZX = \(\dfrac{1}{2}AC=AY=YC\)

Xét tam giác AYZ và tam giác YXC (theo trường hợp c.c.c)

Xét tam giác YXC và tam giác ZXB (theo trường hợp c.c.c)

=> Tam giác AYZ = tam giác YXC = tam giác ZXB (1)

Xét tam giác AZY và tam giác XYZ có :

XZ = AY

XY = AZ => Tam giác AZY = tam giác XYZ (2)

ZY chung

Từ (1) và (2)

=> .....

20 tháng 5 2017

ơ sao bn tự hỏi tự trả lời thế

mà biết r thì hỏi làm chi mắc công tự viết câu trả lời vừa dài vừa mỏi tay đúng ko bn

26 tháng 4 2017

a) Xét tam giác ABM và tam giác ACM có:

AM cạnh chung

AB=AC( tam giác ABC cân tại A )

MB=MC (gt)

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) AM- đường trung tuyến của tam giác ABC (gt)

Và K trọng tâm của tam giác ABC

Suy ra K thuộc AM

Suy ra A,K,M thẳng hàng

2 tháng 7 2019

B1 : 

Cách 1 :

Xét \(\Delta NMB\)và \(\Delta NMC\)có :

NB = NC  ( gt )

NM là cạnh chung

MB = MC ( do M là trung điểm của BC )

nên \(\Delta NMB=\Delta NMC\left(c.c.c\right)\)

Cách 2 :

Do NB = NC => tam giác NBC cân tại N => \(\widehat{NBM}=\widehat{NCM}\)

Xét \(\Delta NMB\)và \(\Delta NMC\)có :

NB = NC ( gt )

\(\widehat{NBM}=\widehat{NCM}\)( CMT )

MB = MC ( do M là trung điểm của BC )

nên \(\Delta NMB=\Delta NMC\left(c.g.c\right)\)

Cách còn lại tự làm nhá

B2 :

Cách 1 :

\(\Delta ABC\)có AB = AC => \(\Delta ABC\)cân tại A => \(\widehat{B}=\widehat{C}\)

AE là tia p/g của \(\widehat{BAC}\) => \(\widehat{BAE}=\widehat{CAE}\)

Xét \(\Delta ABE\)và \(\Delta ACE\)có :

AC = AB ( gt )

\(\widehat{BAE}=\widehat{CAE}\) ( CMT )

AE là cạnh chung

nên \(\Delta ABE=\Delta ACE\)\(\left(c.g.c\right)\)

Cách 2 :

Xét \(\Delta ABE\)và \(\Delta ACE\)có :

\(\widehat{BAE}=\widehat{CAE}\)( AE là tia p/g của BAC )

AB = AC ( gt )

\(\widehat{B}=\widehat{C}\)( do tam giác ABC cân tại A )

nên \(\Delta ABE=\Delta ACE\left(g.c.g\right)\)

21 tháng 6 2017

A B C H M L P Q R .

GIẢ SỬ TAM GIÁC PQR LÀ TAM GIÁC ĐỀU

TA CÓ GÓC PRQ = 60

=> GÓC BMC + GÓC ACB = 120

=> GÓC BMC + GÓC \(\frac{ACB}{2}=120\)

=> GÓC BMC = \(120-\frac{ACB}{2}\)

NỐI HM

DO HM LÀ ĐƯỞNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN CỦA TAN GIÁC AHC VUÔNG TAI H

=> MH = AM = MC

=> GÓC HMC = 180 - 2 . GÓC ACB   VÀ   GÓC MHA = GÓC HAC = 90 - GÓC ACB

=> GÓC BMH = GÓC BMC - GÓC HMC = \(120-\frac{ACB}{2}-180+2.ACB\)

DO GÓC QPR = 60

=> GÓC MHA + GÓC BMH = 120

=> 90 - GÓC ACB + 120 - \(\frac{ACB}{2}-180+2.ACB=120\)

=> 30 + \(\frac{ACB}{2}=120\)

=> GÓC ACB = 90 . 2 = 180 ( VÔ LÍ )

VẬY TAM GIÁC PQR KHÔNG THỂ LÀ TAM GIÁC ĐỀU

                                                            

29 tháng 7 2017

A B C H M L P Q R 1 2

Cách 2:

Giả sử \(\Delta\)PQR là tam giác đều \(\Rightarrow\)^QPR=^PRQ=^PQR=600.

Xét \(\Delta\)PHC: ^PHC=900 \(\Rightarrow\)^C2=900-^QPR=300

Do CL là phân giác trong của ^ACB \(\Rightarrow\)^C1=^C2=300\(\Rightarrow\)^ACB=600 (1)

Ta có: ^PRQ=^MRC=600 (Đối đỉnh).

Xét \(\Delta\)RMC: ^RMC=1800-(^MRC+^C1)=1800-900=900 \(\Rightarrow\)RM\(⊥\)AC hay BM\(⊥\)AC

\(\Rightarrow\)BM là đường trung tuyến đồng thời là đường cao của \(\Delta\)ABC\(\Rightarrow\)\(\Delta\)ABC cân tại B (2)

Từ (1) và (2) \(\Rightarrow\)\(\Delta\)ABC đều \(\Rightarrow\)AB=BC=AC (Mâu thuẫn với đề bài)

\(\Rightarrow\)Giả sử là Sai. Vậy nên \(\Delta\)PQR không thể là tam giác đều.

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

Bài 1:Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BDa) Chứng minh:AD=BCb) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)c) Chứng minh:OE là phân giác của góc xOyBài 2:Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D...
Đọc tiếp

Bài 1:

Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BD

a) Chứng minh:AD=BC

b) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)

c) Chứng minh:OE là phân giác của góc xOy

Bài 2:

Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao  cho BD=AH

Chứng minh rằng:

a) \(\Delta AHB=\Delta DBH\)

b) AB//DH

c) Tính \(\widehat{ACB}\),biết \(\widehat{BAH=35^o}\)

Bài 3:

Cho \(\overline{\Delta}ABC\) vuông tại A có \(\overline{\Delta}B=30^o\)

a) Tính \(\Delta C\)

b) Vẽ tia phân giác của góc C cắt cạnh AB tại D

c) Trên cạnh CB lấy điểm M sao cho CM=CA.Chứng minh \(\Delta ACD=\Delta MCD\)

d) Qua C vẽ đường thẳng xy vuông góc CA.Từ A kẻ đường thẳng song song với CD cắt xy ở K.Chứng minh:AK=CD

e) Tính \(\DeltaẠKC\)

Bài 4:

Cho tam giác ABC vuông tại A,có AB=AC.Gọi K là trung điểm của cạnh BC

a) Chứng minh \(\Delta AKB=\Delta AKC\)và \(AK⊥BC\)

b) Từ C kẻ đường vuông góc với BC,nó cắt AB tại E.Chứng minh EC//AK

c) Chứng minh CE=CB

0