Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
Từ đó suy ra x = 11,y = 17,z = 23
b)
a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)
b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)
Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)
c) Tự làm nhé
a) Xét ΔAOC vuông tại A và ΔOBD vuông tại B có
OA=OB(gt)
∠Olà góc chung
⇒ΔAOC=ΔOBD(cạnh góc vuông-góc nhọn kề)
b) Xét ΔOIB vuông tại B và ΔOIA vuông tại A có
OI là cạnh chung
OB=OA(gt)
⇒ ΔOIB=ΔOIA(cạnh huyền-cạnh góc vuông)
⇒IB=IA(hai cạnh tương ứng)
Ta có: IB+ID=BD(do B,I,D thẳng hàng)
IA+IC=AC(do A,I,C thẳng hàng)
MàIB=IA(cmt)
và BD=AC(do ΔAOC=ΔOBD)
⇒ ID=IC
Xét ΔIDC có ID=IC(cmt)
⇒ ΔIDC cân tại I
c) Ta có: ΔOIB=ΔOIA(cmt)
⇒∠BIO=∠AIO(hai góc tương ứng)
Mà tia IO nằm giữa hai tia IA,IB
⇒IO là tia phân giác của∠AIB
Ta có:
\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)
\(\Leftrightarrow r^2=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)
\(\Leftrightarrow\dfrac{1}{r^2}=\dfrac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\dfrac{1}{\left(p-a\right)\left(p-b\right)}+\dfrac{1}{\left(p-b\right)\left(p-c\right)}+\dfrac{1}{\left(p-c\right)\left(p-a\right)}\)
\(\Leftrightarrow\dfrac{1}{r^2}=4\left(\dfrac{1}{\left(b+c-a\right)\left(c+a-b\right)}+\dfrac{1}{\left(c+a-b\right)\left(a+b-c\right)}+\dfrac{1}{\left(a+b-c\right)\left(b+c-a\right)}\right)\)
\(\Leftrightarrow\dfrac{1}{4r^2}=\dfrac{1}{c^2-\left(a-b\right)^2}+\dfrac{1}{a^2-\left(b-c\right)^2}+\dfrac{1}{b^2-\left(c-a\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(\Leftrightarrow\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\left(1\right)\)
Ta lại có:
\(S=\dfrac{ah_a}{2}=pr=\dfrac{r\left(a+b+c\right)}{2}\)
\(\Leftrightarrow h_a=\dfrac{r\left(a+b+c\right)}{a}\)
\(\Leftrightarrow h_a^2=\dfrac{r^2\left(a+b+c\right)^2}{a^2}\left(2\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}h_b^2=\dfrac{r^2\left(a+b+c\right)^2}{b^2}\left(3\right)\\h_c^2=\dfrac{r^2\left(a+b+c\right)^2}{c^2}\left(4\right)\end{matrix}\right.\)
Từ (2), (3), (4) ta có:
\(h_a^2+h_b^2+h_c^2=r^2\left(a+b+c\right)^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}=\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\)
A B C B' (d) a b c c ha
Kẽ đường thẳng (d) đi qua A và // với BC. Gọi B' đối xứng với B qua (d).
Ta có:
\(BB'^2=B'C^2-BC^2\le\left(AB'+AC\right)^2-BC^2\)
\(\Leftrightarrow4h_a^2\le\left(b+c\right)^2-a^2\left(1\right)\)
Tương tự ta cũng có:
\(\left\{{}\begin{matrix}4h_b^2\le\left(c+a\right)^2-b^2\left(2\right)\\4h_c^2\le\left(a+b\right)^2-c^2\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được
\(4h_a^2+4h_b^2+4h_c^2\le\left(a+b\right)^2-c^2+\left(b+c\right)^2-a^2+\left(c+a\right)^2-b^2\)
\(\Leftrightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)