K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)

\(=\frac{50-5}{9}=\frac{45}{9}=5\)

Từ đó suy ra x = 11,y = 17,z = 23

b)

a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)

b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)

Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)

c) Tự làm nhé

11 tháng 4 2015

điểm m là giao điểm của 3 đường phân giác

 

Bài 1: Tìm x,y, biết rằng: x:y:z=3:4:5 và 5z2 - 3x2-2y2 = 594Bài 2: Cho A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm số nguyên x để A có giá trị lầ số nguyên.Bài 3: Rút gọn biểu thức: a) A= | x-3,5|+|4,1-x| ;\(3,5\le x\le4,1\)b) B= |x+1|+|x-3|Bài 4: Tìm GTLN của biểu thức sau D= \(\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\)      E=\(\frac{27-2x}{12-x};x\in Z\)Bài 5: Hai cạnh của một tam giác dài 25cm và 26cm.Tổng...
Đọc tiếp

Bài 1: Tìm x,y, biết rằng: x:y:z=3:4:5 và 5z- 3x2-2y= 594

Bài 2: Cho A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm số nguyên x để A có giá trị lầ số nguyên.

Bài 3: Rút gọn biểu thức: 

a) A= | x-3,5|+|4,1-x| ;\(3,5\le x\le4,1\)

b) B= |x+1|+|x-3|

Bài 4: Tìm GTLN của biểu thức sau 

D= \(\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\)      

E=\(\frac{27-2x}{12-x};x\in Z\)

Bài 5: Hai cạnh của một tam giác dài 25cm và 26cm.Tổng độ dài hai đường cao tương ứng là 48,8cm.Tính độ dài mỗi đường cao nói trên.

Bài 6: Cho hàm số y = f(x) = ax có đồ thị qua điểm M(-2;3)

a) Xác định hệ số a

b) Vẽ đồ thị hàm số đã cho

c) Xác định tọa độ của một điểm I biết I thuộc đồ thị hàm số đã cho và có tung độ bằng -6

d) CMR: Với mọi giá trị x1,x2 thỏa mãn x1<x2 thì f(x1)>f(x2)

Bài 7 Cho tam giác ABC có 3 góc nhọn, vẽ ra phía ngoài hai tam giác vuông cân tại A là ABD và ACE.

a)CM tam giác DAC= tam giác BAE

b) CM DC=BE và DC vuông góc với BE

c) Gọi M là trung điểm của BC. Trên AM lấy điểm K sao cho M là trung điểm của AK.CM tam giác ADE = tam ggiasc BAK và AM vuong góc với DE

d) Gọi P và Q theo thứ tự là trung điểm cỷa DB và EC. CM tam giác MPQ là tam giác vuông cân

1
27 tháng 1 2017

Dài thế thế thế

8 tháng 12 2021

 

a) Xét ΔAOC vuông tại A và ΔOBD vuông tại B có

OA=OB(gt)

∠Olà góc chung

⇒ΔAOC=ΔOBD(cạnh góc vuông-góc nhọn kề)

b) Xét ΔOIB vuông tại B và ΔOIA vuông tại A có

OI là cạnh chung

OB=OA(gt)

⇒ ΔOIB=ΔOIA(cạnh huyền-cạnh góc vuông)

⇒IB=IA(hai cạnh tương ứng)

Ta có: IB+ID=BD(do B,I,D thẳng hàng)

IA+IC=AC(do A,I,C thẳng hàng)

MàIB=IA(cmt)

và BD=AC(do ΔAOC=ΔOBD)

⇒ ID=IC

Xét ΔIDC có ID=IC(cmt)

⇒ ΔIDC cân tại I

c) Ta có: ΔOIB=ΔOIA(cmt)

⇒∠BIO=∠AIO(hai góc tương ứng)

Mà tia IO nằm giữa hai tia IA,IB

IO là tia phân giác của∠AIB

 

8 tháng 9 2017

Ta có:

\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)

\(\Leftrightarrow r^2=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)

\(\Leftrightarrow\dfrac{1}{r^2}=\dfrac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\dfrac{1}{\left(p-a\right)\left(p-b\right)}+\dfrac{1}{\left(p-b\right)\left(p-c\right)}+\dfrac{1}{\left(p-c\right)\left(p-a\right)}\)

\(\Leftrightarrow\dfrac{1}{r^2}=4\left(\dfrac{1}{\left(b+c-a\right)\left(c+a-b\right)}+\dfrac{1}{\left(c+a-b\right)\left(a+b-c\right)}+\dfrac{1}{\left(a+b-c\right)\left(b+c-a\right)}\right)\)

\(\Leftrightarrow\dfrac{1}{4r^2}=\dfrac{1}{c^2-\left(a-b\right)^2}+\dfrac{1}{a^2-\left(b-c\right)^2}+\dfrac{1}{b^2-\left(c-a\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

\(\Leftrightarrow\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\left(1\right)\)

Ta lại có:

\(S=\dfrac{ah_a}{2}=pr=\dfrac{r\left(a+b+c\right)}{2}\)

\(\Leftrightarrow h_a=\dfrac{r\left(a+b+c\right)}{a}\)

\(\Leftrightarrow h_a^2=\dfrac{r^2\left(a+b+c\right)^2}{a^2}\left(2\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}h_b^2=\dfrac{r^2\left(a+b+c\right)^2}{b^2}\left(3\right)\\h_c^2=\dfrac{r^2\left(a+b+c\right)^2}{c^2}\left(4\right)\end{matrix}\right.\)

Từ (2), (3), (4) ta có:

\(h_a^2+h_b^2+h_c^2=r^2\left(a+b+c\right)^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}=\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\)

8 tháng 9 2017

A B C B' (d) a b c c ha

Kẽ đường thẳng (d) đi qua A và // với BC. Gọi B' đối xứng với B qua (d).

Ta có:

\(BB'^2=B'C^2-BC^2\le\left(AB'+AC\right)^2-BC^2\)

\(\Leftrightarrow4h_a^2\le\left(b+c\right)^2-a^2\left(1\right)\)

Tương tự ta cũng có:

\(\left\{{}\begin{matrix}4h_b^2\le\left(c+a\right)^2-b^2\left(2\right)\\4h_c^2\le\left(a+b\right)^2-c^2\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được

\(4h_a^2+4h_b^2+4h_c^2\le\left(a+b\right)^2-c^2+\left(b+c\right)^2-a^2+\left(c+a\right)^2-b^2\)

\(\Leftrightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)