K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
20 tháng 10 2018
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= (BD + AD) + (AE + CE)
= AB + AC
Vậy AB = AC = 2(R + r)
Không thì dùng định lý Euler nhanh hơn. Gọi d là khoản cách giữa tâm nội tiếp và ngoại tiếp thì ta có
\(d^2=R\left(R-2r\right)\ge0\)
\(\Leftrightarrow R\ge2r\)
Ta có: \(S=\frac{abc}{4R}=\frac{\left(a+b+c\right)r}{2}\)
\(\Rightarrow\hept{\begin{cases}R=\frac{abc}{4S}\\r=\frac{2S}{a+b+c}\end{cases}}\)
Ta cần chứng minh:
\(R\ge2r\)
\(\Leftrightarrow\frac{abc}{4S}\ge\frac{4S}{a+b+c}\)
\(\Leftrightarrow abc\left(a+b+c\right)\ge16S^2\)
\(\Leftrightarrow abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Ta có:
\(\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\le\frac{a+b-c+a+c-b}{2}=a\)
Tương tự ta có điều phải chứng minh
Tới đây thì xong rồi nhé.