K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Kẻ đường cao AH của \(\Delta\)ABC

nên AH là đường cao của \(\Delta\)ABM

\(\Rightarrow S_{ABM}=\frac{AH\cdot BM}{2}\)(1)

Ta có: AH là đường cao của \(\Delta\)ABC(theo cách vẽ)

nên AH là đường cao của \(\Delta\)ACM

\(\Rightarrow S_{ACM}=\frac{AH\cdot MC}{2}\)(2)

Ta có: AM là đường trung tuyến ứng với cạnh BC của \(\Delta\)ABC(gt)

\(\Leftrightarrow\)M là trung điểm của BC

hay BM=MC(3)

Từ (1), (2) và (3) suy ra \(S_{ABM}=S_{ACM}\)(đpcm)

14 tháng 12 2017

cm 2 tam giac bàng nhau

=> s=nhau

dể vậy mà u

9 tháng 2 2018

A A B B C C M M D D E E F F N N F' F'

a) Em tham khảo tại đây.

b) Trên tia đối tia FD, lấy điểm F' sao cho FF' = DE

Theo câu a ta có DF' = 2AM   (1)

Lại có tứ giác ANDM có AN // DM, AM // DN nên ANDM là hình bình hành.

Vậy nên AM = ND (2)

Từ (1) và (2) suy ra NF' = ND

Lại có F'F = DE nên FN = EN hay N là trung điểm EF.

c) Ta có \(S^2_{FDC}\ge16S_{AMC}.S_{FNA}\Leftrightarrow\frac{S_{AMC}}{S_{FDC}}.\frac{S_{FNA}}{S_{FDC}}\le\frac{1}{16}\)

Ta thấy \(\frac{S_{AMC}}{S_{FDC}}=\left(\frac{MC}{DC}\right)^2;\frac{S_{FNA}}{S_{FDC}}=\left(\frac{AF}{FC}\right)^2\)

nên ta cần chứng minh \(\frac{MC}{DC}.\frac{AF}{FC}\le\frac{1}{4}\Rightarrow\frac{MC}{DC}.\left(1-\frac{AC}{FC}\right)\le\frac{1}{4}\)

\(\Rightarrow\frac{MC}{DC}.\left(1-\frac{MC}{DC}\right)\le\frac{1}{4}\)

Đặt \(\frac{MC}{DC}=x\Rightarrow x\left(1-x\right)=-x^2+x=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)

Vậy ta đã chứng minh xong.

bạn chỉ mk cach viết phần trăm vs