Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a, xét tam giác aec và tam giác aed có
ae chung
ec=ed(gt)
ac=ad(gt)
=>tam giác aec = tam giác aed(ccc)
b. từ cma ta có tam giác aec = tam giác aed
=>góc cae=góc dac(2 góc tg ứng)
xét tam giác cai và tam giác dai có
ca=da(gt)
góc cae=góc dac(cmt)
ai chung
=>tam giác cai =tam giác dai(cgc)
=>ci=di(2 cạnh tg ứng)
1)
a) Xét 2 \(\Delta\) \(ABC\) và \(ADE\) có:
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) (vì 2 góc đối đỉnh)
\(AC=AE\left(gt\right)\)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABC=\Delta ADE.\)
=> \(\widehat{ABC}=\widehat{ADE}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(BC\) // \(ED.\)
c) Xét 2 \(\Delta\) vuông \(AEH\) và \(AFH\) có:
\(\widehat{AHE}=\widehat{AHF}\left(=90^0\right)\)
\(EH=FH\left(gt\right)\)
Cạnh AH chung
=> \(\Delta AEH=\Delta AFH\) (hai cạnh góc vuông tương ứng bằng nhau).
=> \(AE=AF\) (2 cạnh tương ứng).
Mà \(AE=AC\left(gt\right)\)
=> \(AF=AC\left(đpcm\right).\)
Chúc bạn học tốt!
3:
Xét ΔABD và ΔKBD ta có:
BK = AB (gt)
\(\widehat{ABD}=\widehat{DBK}\) (DB là phân giác của góc ABC)
BD: cạnh chung
=> ΔABD = ΔKBD (c - g - c)
b/ Có ΔABD = ΔKBD (câu a)
=> \(\widehat{DKB}=\widehat{DAB}=90^0\) (2 góc tương ứng)
=> \(DK\perp BC\) (1)
Lại có AH ⊥ BC (gt) (2)
Từ (1) và (2)
=> DK // AH
P/s: Mik làm đến đây thôi vì phải ôn bài nữa!
a) . Xét\(\Delta ABE\) và \(\Delta ADE\) có:
BA = DA (gt)
Góc BAE = góc DAE ( gt)
AE cạnh chung
nên \(\Delta ADE\) = \(\Delta ABE\)( c-g-c)
b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)= \(^{180^o}\)
Suy ra : \(\widehat{AIB}\) = \(180^o\)- \(\widehat{ABI}-\widehat{BAI}\)
\(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)
Suy ra: \(\widehat{AID}\) = \(180^O\) - \(\widehat{ADI}\)-\(\widehat{IAD}\)
Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)
\(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)
\(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)
Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )
MÀ \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )
NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)
HAY \(AE\perp BD\)
a, \(\text{Xét }\Delta ADE\text{ có }\)
\(AC=AD\)
\(\Rightarrow\Delta ADE\text{cân tại A}\)
Xét \(\Delta ADE\) cân tại A có:
AE là là đường trung tuyến ứng với cạnh đáy CD
\(\Rightarrow\)AE là đường cao\(\Rightarrow\widehat{AEC}=\widehat{AED}=90\)
Xét \(\Delta ADE\) và \(\Delta ACE\) có:
\(\widehat{AEC}=\widehat{AED}=90\)
AE chung
\(EC=ED\)
\(\Rightarrow\Delta ADE=\Delta ACE\) (cặp cạnh góc vuông)
b,Từ câu a, ta có:
\(\Delta ACD\) cân tại A
Mà AE là đường trung tuyến ứng với cạnh đáy CD
\(\Rightarrow\) AE là tia phân giác của \(\widehat{CAD}\) \(\Rightarrow\widehat{CAI}=\widehat{DAI}\) \(\left(1\right)\)
Xét \(\Delta ACI\) và \(\Delta ADI\) có:
AC=AD
\(\widehat{CAI}=\widehat{DAI}\) \(\text{ theo }\left(1\right)\)
\(AE\) chung
\(\Rightarrow\Delta ACI=\Delta ADI\) \(\left(c-g-c\right)\)
\(\Rightarrow DI=CI\)
B A C D E M
a) Xét \(\Delta ABD\) và \(\Delta ADE\) có :
\(AB=AE\left(gt\right)\)
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
\(AD:chung\)
=> \(\Delta ABD\) = \(\Delta ADE\) (c.g.c)
b) Xét \(\Delta MAD\) và \(\Delta CAD\)có :
AD : chung
\(\widehat{DAM}=\widehat{DAE}\left(gt\right)\)
\(AM=AC\left(AB=AE-cmt\right)\)
=> \(\Delta MAD\) = \(\Delta CAD\) (c.g.c)
=> DM = DC (2 cạnh tương ứng)
c) Xét \(\Delta AMC\) có :
AM = AC (cmt)
\(\widehat{AMD}=\widehat{AED}\) (do \(\Delta MAD\) = \(\Delta CAD\) (c.g.c) - cmt)
=> \(\Delta AMC\) cân tại A
Mà : MD = DC
=> AD là đường trung tuyến đồng thời là đường trung trực trong tam giác Cân (tính chất tam giác cân)
=> \(AD\perp CM\) (đpcm)