Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Theo bài ra ta có:
BD//AC; AB//CD
=> ABDC là hình bình hành
mà AB=AC
=> ABCD là hình thoi
Ta lại có \(\widehat{A}=90^o\)
=> ABCD là vuông.
b) Hai đường chéo của hình vuông cắt nhau tại trung điểm mỗi đường
Gọi O' là giao điểm của BC và AD
=> O' là trung điểm BC
=> O' trùng điểm O
=> O là trung điểm AD
=> A, O, D thẳng hàng
a) Xét tứ giác AQCP có :
M là trung điểm PQ ( Q là điểm đối xứng với P qua M )
M là trung điểm AC
=> AQCP là hình bình hành
Vì AP\(\perp\)BC
=> AQCP là hình chữ nhật
b) Vì AQCP là hình chữ nhật
=> AQ = PC
=> AQ//PC
=> AQ//BP ( P\(\in\)BC )
Vì ∆ABC cân tại A
Mà AP là đường cao
=> AP là phân giác và trung trực
=> PC = PB
Mà AQ = PC
=> BP = AQ
Xét tứ giác AQPB có :
AQ//BP (cmt)
AQ = BP (cmt)
=> AQPB là hình bình hành
c) Vì M là trung điểm AC
MN //BC
=> N là trung điểm AB
Xét ∆ABC có :
N là trung điểm AB
P là trung điểm BC ( AP là trung tuyến)
=> NP là đường trung bình ∆ABC
=> NP//AC
=> NP//AM ( M \(\in\)BC )
Xét ∆ABC có :
M là trung điểm AC
P là trung điểm BC
=> MP là đường trung bình ∆ABC
=> MP//AB
=> MP//NA ( N \(\in\)AB )
Xét tứ giác ANPM có :
MP//NA (cmt)
AM//NP (cmt)
=> ANPM là hình bình hành
Mà AP là phân giác BAC (cmt)
=> NAMP là hình thoi
a) Vì M là trung điểm AB
=> AM = MB
Vì N là trung điểm BC
=> BN = NC
=> MN là đường trung bình ∆ABC
=> MN//AC
=> AMNC là hình thang (dpcm)
2) Vì AB = AD (gt)
=> ∆ABD cân tại A
=> ABD = ADB
Ta có AM = MB (cmt)
Q là trung điểm AD
=> AQ = QD
=> MQ là đường trung bình ∆ABD
=> QM//DB
=> QMBD là hình thang
Mà ABD = ADB (cmt)
= > QMBD là hình thang cân (dpcm)
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
suy ra AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
suy ra AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90*
do đó ^DAB+^BAH+ ^HAC+^CAE=180*
tức là D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đối xứng với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
nên tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra ^ADB=^AHB=90*
tương tự có ^AEC=90*
suy ra BD//CE (cùng vuông góc với DE)
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
nên BAEC là hình thang vuông.
d) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
công vế với vế của (5) và (6) ta có BD+CE=BH+CH
hay BD+CE=BC
k mik nha bn
a: Xét tứ giác ABDC có
I là trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
a/Áp dụng Pitago đảo có \(BC^2=13^2=169,AB^2+BC^2=5^2+12^2=169\)
suy ra tgiac ABC vuông tại A(1). Theo đề N là tđ AD,BC(2)
(1) và (2) suy ra ABDC là hcn
b/SABDC=AC.AB=5.12=60cm^2