K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

M.N NHANH NHANH GIẢI DÙM BÉ VS

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

 cặp cạnh tương ứng vuông góc là mỗi cạnh của góc này vuông góc với mỗi cạnh của góc kia ( mỗi cạnh tương ứng đấy và vuông góc thành từng đôi 1,1 cạnh của góc này vuông góc với 1 cạnh của góc kia và 2 cạnh còn lại của 2 góc cũng thế).còn cặp cạnh tương ứng song song cũng như tương ứng vuông góc đều phải là mỗi cạnh của góc này song song với 1 cạnh của góc kia.chúc may mắn nha!

8 tháng 12 2016

Mình không biết vẽ hình, sorry.

a) Xét tam giác ABD và tam giác ACD có :

AB=AC (GT)

góc BAD= góc CAD (GT)

AD là cạnh chung

=> tam giác ABD = tam giác ACD (c.g.c)

b) Ta có: tam giác ABD= tam giác ACD (chứng minh trên)=> góc B= góc C (2 góc tương ứng ).

8 tháng 12 2016

Còn 2 câu cuôi thì mình hông biết làm !

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Ta có: ΔABD=ΔAED

nên DB=DE và \(\widehat{ABD}=\widehat{AED}=90^0\)

hay DE\(\perp\)AC

c: Xét ΔDBF vuông tại B và ΔDEC vuông tại E có

DB=DE

BF=EC

Do đó: ΔDBF=ΔDEC

Suy ra: \(\widehat{BDF}=\widehat{EDC}\)

=>\(\widehat{BDF}+\widehat{BDE}=180^0\)

hay F,D,E thẳng hàng

a: Xét ΔADB và ΔADE có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Ta có: ΔABD=ΔAED

nên DB=DE và \(\widehat{ABD}=\widehat{AED}=90^0\)

hay DE\(\perp\)AC

c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE

BF=EC

Do đó: ΔBDF=ΔEDC

Suy ra: \(\widehat{BDF}=\widehat{EDC}\)

=>\(\widehat{BDF}+\widehat{BDE}=180^0\)

hay F,D,E thẳng hàng

28 tháng 6 2019

A B C D E F I 1 2 1

Cm: a) Xét t/giác ADB và t/giác EDB

có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)

      BD : chung

    \(\widehat{B_1}=\widehat{B_2}\)(gt)

=> t/giác ADB = t/giác EDB (ch - gn)

=> AB = BE ; AD = ED (các cặp cạnh t/ứng)

+) AD = ED => D thuộc đường trung trực của AE

+) AB = BE => B thuộc đường trung trực của AE

mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE 

b) Xét t/giác ADF và t/giác EDC

có:  \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)

       AD = DE (cmt)

   \(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

=> t/giác ADF = t/giác EDC (g.c.g)

=> DF = DC (2 cạnh t/ứng)

c) Ta có: AD < DF (cgv < ch)

Mà DF = DC (cmt)

=> AD < DC 

d) Xét t/giác ABC có AB > AC 

=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)

=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)

hay \(\widehat{ICB}>\widehat{B_2}\)

=> BI > IC (quan hệ giữa góc và cạnh đối diện)

a) Xét tam giác vuông BED và tam giác vuông BAD ta có :

ABD = EBD ( BD là pg ABC )

BD chung

=> Tam giác BED = tam giác BAD ( ch-gn)

=  >AD = DE( tg ứng)

b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :

AD = DE (cmt)

ADF = EDC ( đối đỉnh)

=> Tam giác AFD = tam giác EDC ( cgv-gn)

=> DF = DC (dpcm)

c) Xét tam giác vuông DEC có 

DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)

Mà AD = DE (cmt)

=> AD < DC

d) chịu