K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

A B C E D F

Giải:

a, Xét \(\Delta ADB,\Delta ADE\) có:

AD: chung

\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)

AB = AE ( gt )

\(\Rightarrow\Delta ADB=\Delta ADE\left(c-g-c\right)\left(đpcm\right)\)

b, Ta có: AE = AB

\(\Rightarrow\Delta ABE\) cân tại A

\(\Delta ABE\) cân tại A có AD là phân giác

\(\Rightarrow\)AD cũng là đường trung trực ( đpcm )

c, \(\Delta ADB=\Delta ADE\Rightarrow\widehat{ABD}=\widehat{AED}\) ( góc t/ứng )

\(\Rightarrow180^o-\widehat{ABD}=180^o-\widehat{AED}\Rightarrow\widehat{DBF}=\widehat{DEC}\left(đpcm\right)\)

Xét \(\Delta BFD,\Delta ECD\) có:

\(\widehat{DBF}=\widehat{DEC}\left(cmt\right)\)

\(\widehat{BDF}=\widehat{EDC}\) ( đối đỉnh )

\(BD=DE\left(\Delta ADB=\Delta ADE\right)\)

\(\Rightarrow\Delta BFD=\Delta ECD\left(g-c-g\right)\left(đpcm\right)\)

Vậy...

9 tháng 5 2017

Bạn ơi mình không thấy rõ hình bạn có thể về hình qua bên trái được không

23 tháng 4 2017

a)xet tam giac abd va tam giac aed co 

ab=ae

ad la canh chunggoc bad = goc ead

=>tam giác abd = ead

b)gọi i là giao điểm của ad và be

xét tam giác abi và tam giác aei có :

ab=ae

ad là cạnh chung

goc bai = góc eai

=> tam giác abi= tâm giác aei

=>ib=ie =>ad là đường trung trực của be

cho mk 3 đi mk giải tiếp cho, bài nay mk vừa mới kiểm tra

23 tháng 4 2017

mk giải tiếp nè

theo câu a,b=>góc dbf= góc dec (kề bù do góc abd= aed)

xét tam giác bfd và ecd có

góc dbf= góc dec

bd=ed

bdf=edc

=> tam giác dbf= tam giác ecd

k cho mk đi.mk hứa mk tl hết cho mà

30 tháng 4 2017

Ta có hình vẽ: A B D C E 1 2 1 2 H 1 2 1 2 F

a) Xét 2 tam giác ADB và tam giác ADE có:

góc A1 = góc A2 (gt)

AB = AE (gt)

AD là cạnh chung

=> tam giác ADB = tam giác ADE (c-g-c)

b) Xét 2 tam giác ABH và tam giác AEH có:

AB = AE (gt)

góc A1 = góc A2 (gt)

AH là cạnh chung

=> tam giác ABH = tam giác AEH (c-g-c)

=> BH = EH (2 cạnh tương ứng) (1)

=> góc H1 = góc H2 (2 góc tương ứng)

mà góc H1 + góc H2 = 180 độ

=> góc H1 = góc H2 = 180/2 =90 độ

=> AH \(\perp\) BE (2)

từ (1) và (2) => AH là đường trung trực của BE

=> AD cũng là đường trung trực của BE (vì A, H, D cùng nằm trên 1 đoạn thẳng)

c) Ta có: góc B1 + góc B2 = 180 độ

góc E1 + góc E2 = 180 độ

mặt khác : góc B1 = góc E1 ( vì tam giác ADB = tam giác ADE)

=> góc B2 = góc E2

Vậy góc DBF = góc DEC

Xét 2 tam giác BFD và tam giác ECD có:

góc DBF = góc DEC (cmt)

BD = ED (vì tam giác ADB = tam giác ADE)

góc D1 = góc D2 (đối đỉnh)

=> tam giác BFD = tam giác ECD (g-c-g)

6 tháng 5 2017

a) Phần a bn chép sai đề rùi phải là tam giác ADB = tam giác ADE mới đúng !.

Xét tam giác ADB và tam giác ADE có:

AB = AE ( theo đề bài )

\(\widehat{BAD}=\widehat{CAD}\)( Vì AD là tia phân giác của \(\Delta ADC\))

AD là cạnh chung

Do đó tam giác ADB = tam giác ADE( c.g.c)

b) Gọi giao điểm của AD và BE là H

Xét tam giác AHB và AHE có:

AH là cạnh chung

\(\widehat{BAD}=\widehat{EAD}\) ( Vì AD là tia phân giác của \(\Delta ADC\) )

AB =AE ( theo đề bài )

Do đó tam giác AHB = tam giác AHE ( c.g.c)

\(\Rightarrow BH=EH\) ( 2 cạnh tương ứn0g)

\(\Rightarrow\)AD là đường trung tuyến của BE

c) *Có tam giác ADB = tam giác ADE ( theo c/m câu a)

\(\Rightarrow\) \(BD=DE\) (2 cạnh tương ứng ) \(\left(1\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\) ( 2 góc tương ứng )

mà:

\(\widehat{ABD}+\widehat{DBF}=180^0\Rightarrow\widehat{DBF}=180^0-\widehat{ABD}\)

\(\widehat{AED}+\widehat{DEC}=180^0\Rightarrow\widehat{DEC}=180^0-\widehat{AED}\)

\(\Rightarrow\widehat{DBF}=\widehat{DEC}\)

*Xét tam giác BFD và tam giác ECD có:

\(\widehat{DBF}=\widehat{DEC}\left(cmt\right)\)

\(BD=ED\left(1\right)\)

\(\widehat{BDF}=\widehat{EDC}\) (2 góc đối đỉnh)

Do đó: tam giác BFD = tam giác ECD (g.c.g)

7 tháng 5 2017

bn ve hinh nhu the nao

5 tháng 5 2018

A B C D E F 1 2

a) Vì AD là tia phân giác của tam giác ABC => \(\widehat{A_1}=\widehat{A_2}\)

Xét tam giác ABD và tam giác ADE có : \(\hept{\begin{cases}AE=AB\left(GT\right)\\\widehat{A_1}=\widehat{A_2}\left(cmt\right)\\Chung\end{cases}AD=>}\)Tam giác ADB=Tam giác ADE (c-g-c)    (đpcm)

b) Vì tam giác ADB= tam giác ADE ( cmt phần a) => DB = DE ( cạnh tương ứng ) => D thuộc đường trung trực cuae BE (1)

  Vì AB=AE(GT) => A thuộc đường trung trực của BE  (2).Từ (1);(2)=> AD là đường trung trực của BE  (đpcm)

c)Vì tam giác ADB=tam giác ADE ( cmt phần ) => \(\widehat{ABD=}\widehat{AED}\)(góc tương ứng) và \(\widehat{ADB}=\widehat{ADE}\)(góc tương ứng )

  Vì\(\widehat{FBD}\)là góc ngoài tam giác ABD => \(\widehat{FBD}=\widehat{ABD}+\widehat{ADB}\)

Vì \(\widehat{DEC}\)là góc ngoài tam giác ADE => \(\widehat{DEC}=\widehat{ADE}+\widehat{AED}\)

       \(=>\widehat{FBD}=\widehat{DEC}\)

Xét tam giác BDF và tam giác ECD có : \(\hept{\begin{cases}\widehat{FBD}=\widehat{DEC}\\BD=CE\left(cmt\right)\\\widehat{BDF}=\widehat{ECD}\end{cases}}\)=> Tam giác BDF = Tam giác ECD  (đpcm)

=> \(\hept{\begin{cases}CE=BF\\\widehat{C}=\widehat{BFD}\end{cases}}\)

 Vì DE = DB(cmt phần b) => Tam giác DBE cân tại D => \(\widehat{DBE}=\widehat{DEB}\)

Mà \(\widehat{FBD}=\widehat{CED}\)(cmt)=> \(\widehat{FBD}+\widehat{DBE}=\widehat{CED}+\widehat{DEB}=>\widehat{FBE}=\widehat{CEB}\)

Xét tam giác BCE và tam giác EFB có : \(\hept{\begin{cases}\widehat{BFD}=\widehat{ECD}\left(cmt\right)\\BF=CE\left(cmt\right)\\\widehat{FBE}=\widehat{CEB}\end{cases}}\)=> Tam giác BCE = Tam giác EFB (g-c-g)   (đpcm)

d) Vì \(\widehat{FBD}\)là góc ngoài của tam giác ABC => \(\widehat{FBD}=\widehat{ABC}+\widehat{ACB}=>\widehat{FBD}>\widehat{ACB}\)

      Mà \(\widehat{FCB}=\widehat{CED}=>\widehat{CED}>\widehat{ACB}\)=> Tam giác DEC có DC>DE

mà DE=DB( cmt phần b)=> DB <DC

12 tháng 5 2019

Ảnh nè:

7 tháng 5 2016

a, 
xét tam giác ABD và tam giác ADE có
AB=AE (gt)
GÓC A1= GÓC A2 ( ad là tia phân giác)
ad chung
=> tam giác abd = tam giác ade (c.g.c)
b, xét tam giác BAI và tam giác EAI có:
AB=AE(gt)
A1=A2 (ad là tia phân giác)
AI chung
=> tam giác BAI = tam giác EAI (c.g.c)
=> BI=IE (2 cạnh t,ứng)
vì BI=BE ( cmt) => AI là đường trung trực của BE
P/s: 2 phần kia bạn tự làm nhé ak cái I là BE cắt AD tại I