Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath
bạn kham khảo tại link dưới đây nhé.
câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
ta có hình vẽ sau :
a, tam giác ABC có AB2 + AC2 = 242 + 322 =1600 ;
BC2 = 1600.
Vậy AB2 + AC2 = BC2.
=> tam giác ABC vuông góc tại A.
b, áp dụng định lý Pi-ta-go vào tam giác vuông AMB, ta có :
BM2 = AB2 + AM2 = 242 + 72 = 625 => BM = \(\sqrt{625}=25\)
Mặt khác , MC = AC - AM = 32 - 7 = 25. Vậy MB = MC
=> tam giác MBC cân tại M
do đó \(\widehat{B_1}=\widehat{C}\)
\(\widehat{AMB}=\widehat{B_1}+\widehat{C}\) ( tính chất góc ngoài của tam giác MCB ) hay
\(\widehat{AMB}=2\widehat{C}\)
Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: \(\widehat{ABN}=\widehat{ACM}\)