K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các bạn của minh và các bạn trên online math cố gắng giúp mình mấy bài này nha ai giúp được bài gì cũng được cảm ơn nhiều lắm Toán 8 hình học Bài : đường thẳng song song với một đường thẳng cho trước Bài 1 . cho đoạn thẳng AB .Kẻ tia Ax bất kì . Trên tia Ax lấy các điểm C,D,E,F sao cho AC = CD = DE =EF . Kẻ đoạn thẳng FB . Qua C, D,E kẻ CC’ , DD’ , EE’ song song với FB ( C’ ,D’ ,E’ thuộc...
Đọc tiếp

Các bạn của minh và các bạn trên online math cố gắng giúp mình mấy bài này nha ai giúp được bài gì cũng được cảm ơn nhiều lắm

Toán 8 hình học

Bài : đường thẳng song song với một đường thẳng cho trước

Bài 1 . cho đoạn thẳng AB .Kẻ tia Ax bất kì . Trên tia Ax lấy các điểm C,D,E,F sao cho AC = CD = DE =EF . Kẻ đoạn thẳng FB . Qua C, D,E kẻ CC’ , DD’ , EE’ song song với FB ( C’ ,D’ ,E’ thuộc đoạn thẳng AB )

a, chứng minh AC’ = C’D’= D’E’= E’B ( bằng hai cách khác nhau )

b, cho DD’= 3 cm . Tính CC’ , FB (bằng hai cách khác nhau)

bài 2 .cho đoạn thẳng AB . hãy chia đoạn thẳng AB thành 4 đoạn thẳng bằng nhau ( bằng 2 cách khác nhau )

bài 3 cho tam giác ABC và M  là điểm bất kì thuộc cạnh BC . gọi D là điểm đối xứng với A qua M . khi điểm M  di chuyển trên cạnh BC thì điểm D di chuyển trên đường nào .

bài 4 cho đoạn thẳng AB và đường thẳng d song song với AB và C là điểm bất kì thuộc đường thẳng d . Gọi M , N, P lần lượt là trung điểm của các cạnh BC,AC,AB và G  là giao điểm của AM , BN

a, chứng minh các điểm C ,G,P thẳng hàng

b, khi C  di chuyển trên dường thẳng d thì điểm G di chuyển trên đường thẳng nào .

bài 5 cho tam giác ABC cân tại A và M  là điểm bất kì thuộc cạnh BC . gọi D ,E lần lượt là chân các đường vuông góc hạ từ M tới AB , AC . KẺ  BH vuông góc với AC ( H thuộc AC ) và kẻ MK vuông góc với BH  ( K thuộc BH ) . chứng minh MD = BK và MD + ME = BH

BÀI 6 . Cho tam giác ABC cân tại A và M là điểm di chuyển trên cạnh BC . Chứng minh tổng khoảng cách từ M  tới AB và AC  luôn không đổi

Bài 7 tam giác nhọn ABC có điểm M bất kì thuộc cạnh BC. Từ M kẻ MD , ME  lần lượt song song với AB, AC ( D thuộc AC , E thuộc AB ) .gọi I  là trung điểm của DE .

a, chứng minh 3 điểm A,I,M thẳng hàng

b,khi M di chuyển trên cạnh BC  thì I di chuyển trên đường nào ?

bài 8   Cho đoạn thẳng AB và M là điểm bất kì thuộc đoạn thẳng đó. Vẽ về một phía của AB các tam giác đều AMD , BME . Gọi I là trung điểm của đoạn thẳng DE.  Khi M di chuyển trên đường thẳng AB:

a, chứng minh MI luôn đi qua giao điểm của AD , BE.

B, điểm I di chuyển trên đường nào ?

Bài 9 Cho đoạn thẳng AB bằng 6 cm và M là điểm bất kì thuộc đoạn thẳng AB . vẽ tia Mx vuông góc với AB . lấy N,P thuộc tia Mx sao cho MN = AM và MP=MB . Gọi I,K lần lượt là trung điểm của các đoạn thẳng AN , PB và O  là trung điểm của đoạn thẳng IK

a, tính độ dài khoảng cách từ O tới AB

b, Gọi C là giao điểm của tia AI và tia BP. Chứng minh rằng khi M di chuyển trên đoạn thẳng AB thì C  luôn cố định

c, khi điểm M di chuyển trên đoạn thẳng AB thì điểm O di chuyển trên đường nào ?

·         Chú thích các bạn giúp mình bài nào cũng dc mỗi người góp chút sức giúp mình nha . trình bày khoa học đầy đủ ^-^

2
17 tháng 10 2016

v dài bn nên đăng từng câu nhỏ để mọi người tiện làm hơn

18 tháng 3 2021

bủh bủh dảk dảk lmao lmao

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:a) E và F đối xứng qua ABb) MEBF là hình thoic) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.a) chứng minh AH là trục đối xứng...
Đọc tiếp

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:

a) E và F đối xứng qua AB

b) MEBF là hình thoi

c) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?

Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.

a) chứng minh AH là trục đối xứng của tam giác ABC?

b) các tứ giác EMCB, BEMH, AEHM là hình gì? vì sao?

c) tìm điều kiện tam giác ABC để AEHM là hình vuông?

Trong trường hợp này tính diện tích tam giác BHE. Biết AB=4cm

Bài 3: Gọi E, F lần lượt là trung điểm AB, AC của tam giác ABC.

a) Tứ giác EFCB là hình gì? vì sao?

b) CE và BF cắt nhau tại G. Gọi K, H thứ tự là trung điểm của GC và GB. Chứng minh EFKH là hình bình hành.

c) Tìm điều kiện của tam giác ABC để EFKH là hình chữ nhật.

Khi đó so sánh diện tích EFKH với diện tích tam giác ABC

Vẽ hình và giải giúp mình nha. (bài nào làm được thì làm ạ)

Mình đang cần gấp.

Mơn nhìu~~

 

1
9 tháng 6 2019

1A)  Gọi I là giao điểm của EF và AB                                                                                                                                                                   Vì EF là đường trung trực của MB nên BE=BF                                                                                                                                             xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv)                                                                                                                 IE=IF; EF vuông góc AB  =) E và F đối xứng nhau qua AB nên ta chứng minh  được hai tam giác BEI và BF1 bằng nhau.                   1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB 
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI 
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB 
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi                                                                                                                                                                   1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC

1 tháng 5 2019

Hhi sr nha chị rep hơi muộn

Ta có :

 AFE =OFC(2 góc đối đỉnh)

Mà ta lại có: OF//AD(gt)

nên OFC=DAC(2 góc đồng vị )

và OF//AD nên BAD=BEO(2 góc đồng vị )

Mặt khác AD là tia phân giác của BAC nên BAD=DAC

từ  đó ta có BEO=AFE

hay tam giác AEF cân tại A tức AE=AF

Xét AB+AC=AB+AE+AC-AE=AB+AE+AC-AF

=EB+FC

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. a) Chứng minh ED/AD + BF/BC = 1b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song...
Đọc tiếp

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. 

a) Chứng minh ED/AD + BF/BC = 1

b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.

Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.

a) Chứng minh CF = DK

b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.

Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.

Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.

Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.

7
17 tháng 3 2020

Bài 6 :

Tự vẽ hình nhá :)

a) Gọi O là giao điểm của AC và EF

Xét tam giác ADC có :

EO // DC => AE/AD = AO/AC (1)

Xét tam giác ABC có :

OF // DC

=> CF/CB = CO/CA (2)

Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm

Bài 7 :

A B C D G K M F E

a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)

Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG

Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM 

=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)

Từ (1) và (2) => CF / EF = DK / AD

Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È

=> CF = DK ( đpcm )

Bài 8 : 

A B C M N 38 11 8

Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )

Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :

AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38

=> 1140 = 19.AN + 722

=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )

=> NC = 38 - 12 = 26 ( cm )

4 tháng 2 2020

chắc sang năm mới làm xong mất