K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 5 2019

Lời giải:

a)

Từ giả thiết suy ra \(MD\perp BC, ME\perp AC, MF\perp AB\)

\(\Rightarrow \widehat{MFB}=\widehat{MDB}=\widehat{MDC}=\widehat{MEC}=90^0\)

Tứ giác $MDBF$ có tổng 2 góc đối \(\widehat{MFB}+\widehat{MDB}=90^0+90^0=180^0\) nên $MDBF$ là tgnt.

Tứ giác $MDEC$ có \(\widehat{MDC}=\widehat{MEC}(=90^0)\) và cùng nhìn cạnh $MC$ nên $MDEC$ là tứ giác nội tiếp.

b)

Vì $MDBF$ và $MDEC$ nội tiếp (cmt) và tứ giác $ABMC$ cũng nội tiếp $(O)$ nên:

\(\left\{\begin{matrix} \widehat{FDM}=\widehat{FBM}=180^0-\widehat{ABM}\\ \widehat{MDE}=180^0-\widehat{ECM}=180^0-\widehat{ACM}\\ \widehat{ABM}+\widehat{ACM}=180^0\end{matrix}\right.\)

\(\Rightarrow \widehat{FDE}=\widehat{FDM}+\widehat{MDE}=360^0-(\widehat{ABM}+\widehat{ACM})=360^0-180^0=180^0\)

\(\Rightarrow F,D,E\) thẳng hàng.

c)

Xét tam giác $BMD$ và $AME$ có:

\(\widehat{BDM}=\widehat{AEM}(=90^0)\)

\(\widehat{MBD}=\widehat{MAE}\) (góc nt cùng chắn cung CM)

\(\Rightarrow \triangle BMD\sim \triangle AME(g.g)\Rightarrow \frac{BD}{MD}=\frac{AE}{ME}(1)\)

Hoàn toàn TT: \(\triangle CMD\sim \triangle AMF(g.g)\Rightarrow \frac{CD}{MD}=\frac{AF}{MF}(2)\)

Xét tam giác $MEC$ và $MFB$ có:

\(\widehat{MEC}=\widehat{MFB}=90^0\)

\(\widehat{MCE}=\widehat{MBF}(=180^0-\widehat{ABM})\)

\(\Rightarrow \triangle MEC\sim \triangle MFB(g.g)\Rightarrow \frac{CE}{ME}=\frac{BF}{MF}(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{BC}{MD}=\frac{BD}{MD}+\frac{CD}{MD}=\frac{AE}{ME}+\frac{AF}{MF}=\frac{AE+CE}{ME}+\frac{AF-FB}{MF}-\frac{CE}{ME}+\frac{BF}{MF}\)

\(=\frac{AC}{ME}+\frac{EB}{MF}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
15 tháng 5 2019

Hình vẽ:

Violympic toán 9

NV
21 tháng 1 2021

Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)

Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)

D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp

\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)

Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp

\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)

\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng

NV
21 tháng 1 2021

Hình vẽ:

undefined

9 tháng 4 2016

giải câu c, d đi

20 tháng 10 2019

goi giao MF voi ABla H , giao ME voi AC la K, MD voi BC la I

Do tam giac ABC noi tiep (O) ma M thuoc (o) nen ABMC noi tiep

xet tam giac MDF co \(\hept{\begin{cases}H.la.trung.diem.MF\\I.la.trung.diem.DM\end{cases}\Rightarrow HI//DF}\) (1)

tuong tu cung co \(IK//ED\) va  \(HK//EF\) ( do tinh chat duong trung binh)          (2)

Xet tu giac HBIM co \(\widehat{BHM}+\widehat{BIM}=90+90=180^o\)

=> HBIM la tu giac noi tiep => \(\widehat{HIB}=\widehat{BMH}\)  (cung chan \(\widebat{BH}\) )   (4)

tuong tu cung chung minh duoc tu giac MIKC la tu giac noi tiep => \(\widehat{KIC}=\widehat{KMC}\left(cung.chan.\widebat{KC}\right)\)(3)

Lai co \(\widehat{HBM}=\widehat{MAH}+\widehat{AMB}\) (tinh chat goc ngoai)

va \(\widehat{MCK}=\widehat{MCB}+\widehat{ACB}\) 

ma ABMC noi tiep suy ra \(\hept{\begin{cases}\widehat{AMB}=\widehat{ACB}\\\widehat{MAB}=\widehat{MCB}\end{cases}}\)

=> \(\widehat{MHB}=\widehat{MCK}\)

xet tam giac MHB va tam giac MKC co

\(\widehat{H}=\widehat{K}=90\)

\(\widehat{MHB}=\widehat{MCK}\) (cmt)

=> \(\widehat{HMB}=\widehat{KMC}\) (5)

tu (3),(4),(5)  =>\(\widehat{HIB}=\widehat{KIC}\)

=> H,I,K thang hang (6)

tu (1),(2),(6)

suy ra F,D,E thang hang ( tien de Oclit)

chuc ban hoc tot

20 tháng 10 2019

Cần gấp !!

3 tháng 5 2018

b. Do tứ giác MDBE nội tiếp (cmt) => \(\widehat{MBE}=\widehat{MBC}=\widehat{MDE}=\frac{1}{2}sđ\widebat{MC}\)(1)

Vì MD \(\perp\)AB tại D (gt) => \(\widehat{MDA}=90^o\)

MF \(\perp\)AC tại F (gt) => \(\widehat{MFA}=90^o\)

Xét tứ giác ADMF có: \(\widehat{MDA}+\widehat{MFA}=90^o+90^o=180^o\)=> tứ giác ADMF nội tiếp (dhnb)

=> \(\widehat{MDF}=\widehat{MAF}=\widehat{MAC}=\frac{1}{2}sđ\widebat{MC}\)(2)

Từ (1) và (2) => \(\widehat{MDE}=\widehat{MDF}\)=> D, E, F thẳng hàng (2 góc có cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau)

* Ta có: tứ giác MEFC nội tiếp (cmt) => \(\widehat{EFM}=\widehat{ECM}=\frac{1}{2}sđ\widebat{EM}\)\(\Leftrightarrow\widehat{DFM}=\widehat{BCM}\)(3)

tứ giác MDBE nội tiếp (cmt) => \(\widehat{MDE}=\widehat{MBE}=\frac{1}{2}sđ\widebat{ME}\)\(\Leftrightarrow\widehat{MDF}=\widehat{MBC}\)(4)

Từ (3) và (4) => \(\Delta MDF\)đồng dạng với \(\Delta MBC\)(g.g) => \(\frac{MD}{MB}=\frac{MF}{MC}\Leftrightarrow MB\times MF=MD\times MC\)(đpcm)

c. Nối A với M, B với M 

Ta có: \(\widehat{AMB}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(5)

Do tứ giác MEFC nội tiếp => \(\widehat{FME}=\widehat{FCE}=\frac{1}{2}sđ\widebat{EF}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(6)

Từ (5) và (6) => \(\widehat{AMB}=\widehat{FME}\)(7)

lại có: tứ giác ADMF nội tiếp (cmt) => \(\widehat{MAD}=\widehat{MFD}=\frac{1}{2}sđ\widebat{MD}\Leftrightarrow\widehat{MAB}=\widehat{MFE}\)(8)

từ (7) và (8) => \(\Delta ABM\)đồng dạng với \(\Delta FEM\)(g.g) => \(\frac{AB}{FE}=\frac{AM}{FM}\Leftrightarrow\frac{AB}{AM}=\frac{FE}{FM}\Leftrightarrow\frac{2\times AI}{AM}=\frac{2\times FK}{FM}\Leftrightarrow\frac{AI}{AM}=\frac{FK}{FM}\)(9)

Lại có: \(\widehat{MAD}=\widehat{MFD}\)(CMT) => \(\widehat{MAI}=\widehat{MFK}\)(10)

Từ (9) và (10) => \(\Delta MAI\)đồng dạng với \(\Delta MFK\)(c.g.c) => \(\widehat{IMA}=\widehat{KMF}\)(11)

Ta có: \(\widehat{MID}\)là góc ngoài tại đỉnh I của \(\Delta MAI\)=> \(\widehat{MID}=\widehat{MAI}+\widehat{IMA}\)

Tương tự: \(\widehat{MKD}\)là góc ngoài tại đỉnh K của \(\Delta MFK\)=> \(\widehat{MKD}=\widehat{MFK}+\widehat{KMF}\)

Từ (10) và (11) => \(\widehat{MID}=\widehat{MKD}\)=> Tứ giác MDIK là tứ giác nội tiếp (DHNB) => \(\widehat{IDM}+\widehat{IKM}=180^o\)(Hệ quả)

Mà \(\widehat{IDM}=\widehat{ADM}=90^o\)=> \(\widehat{IKM}=90^o\)<=> MK vuông góc với KI (ĐPCM)

a: góc EMC+góc EFC=180 độ

=>EMFC nội tiếp

góc MDB=góc MEB=90 độ

=>MEDB nội tiếp

=>góc DBM=góc DEM

b: góc DEF=góc DEM+góc FEM

=180 độ-góc ABM+góc FCM

=180 độ

=>D,F,E thẳng hàng