Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kéo dài BI cắt AK tại D. Ta chứng minh \(BD\perp AK\).
Từ I kẻ \(IM\perp AB;IN\perp BC\)
Ta có ngay \(\Delta BIM=\Delta BIN\) (Cạnh huyền góc nhọn)
\(\Rightarrow BM=BN\)
Kéo dài tia AK cắt BC tại P.
Ta có \(\Delta AIM=\Delta PIN\left(g-c-g\right)\Rightarrow AM=PN\)
Vậy thì ta có AB = AM + MB = PN + NB = BP.
Suy ra tam giác ABP cân tại B.
Xét tam giác cân ABP có BD là phân giác đồng thời đường cao. Vậy \(BD\perp AK\)
Ta thấy HJ và HK là phân giác hai góc kề bù nên chũng vuông góc.
Xét tứ giác JDKH có \(\widehat{JDK}+\widehat{JHK}=90^o+90^o=180^o\)
Vậy JDKH là tứ giác nội tiếp. Hay \(\widehat{JKH}=\widehat{JDH}\)
Xét tứ giác BHDA có \(\widehat{ADB}=\widehat{AHB}=90^o\) nên BHDA là tứ giác nội tiếp.
Suy ra \(\widehat{BDH}=\widehat{BAH}\)
Mà \(\widehat{BAH}=\widehat{BCA}\) (Cùng phụ với góc \(\widehat{ABC}\) )
Vậy nên \(\widehat{JKH}=\widehat{BCA}\)
Xét tam giác ABC và tam giác HJK có:
\(\widehat{BAC}=\widehat{JHK}=90^o\)
\(\widehat{BCA}=\widehat{JKH}\)
\(\Rightarrow\Delta ABC\sim\Delta HJK\left(g-g\right)\)
Cô giải đúng rùi nhưng em chưa học tứ giác nội tiếp đường tròn
Nhưng dù sao cũng cảm ơn cô
Gọi giao điểm của AD và BC là I. Theo tính chất đường kính dây cung, ta có I là trung điểm AD. Từ đó dễ thấy tam giác ABD cân tại B.
Ta sẽ chứng minh AH luôn tiếp xúc với đường tròn (O; OA) tại A hay \(AH\perp OA\)
Xét tứ giác EHBA có \(\widehat{EHB}+\widehat{EAB}=90^o+90^o=180^o\)
Vậy nên EHBA là tứ giác nội tiếp
Suy ra \(\widehat{HEB}=\widehat{HAB}\)
Do \(EH\perp HC,AD\perp HC\Rightarrow\)EH // AD \(\Rightarrow\widehat{HEB}=\widehat{BDA}\) (Hai góc so le trong)
Tứ giác ABDC nội tiếp nên \(\widehat{BDA}=\widehat{BCA}\) (Hai góc nội tiếp cùng chắn cung AB)
Mà \(\widehat{BCA}=\widehat{OAC}\)
Vậy nên \(\widehat{HAB}=\widehat{OAC}\)
Ta có \(\widehat{HAO}=\widehat{HAB}+\widehat{BAO}=\widehat{OAC}+\widehat{BAO}=\widehat{BAC}=90^o\)
Vậy HA vuông góc AO tại A hay HA luôn tiếp xúc với đường tròn \(\left(O;OA\right)\)
Mà (O;OA) là cố định nên HA luôn tiếp xúc với một đường tròn cố định.
a: Xét (O) có
OI là một phần đường kính
AD là dây
OI\(\perp\)AD tại I
Do đó: I là trung điểm của AD
Xét ΔBAD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBAD cân tại B
b: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó;ΔBAC vuông tại A
=>BA\(\perp\)EC
Xét tứ giác EHBA có
\(\widehat{EHB}+\widehat{EAB}=90^0+90^0=180^0\)
=>EHBA là tứ giác nội tiếp
=>E,H,A,B cùng thuộc 1 đường tròn
thế còn c,d đâu anh ??? hình vẽ ko có làm còn thiếu, có trách nhiệm với người hỏi đi anh
Tam giác EBF cân tại B nên HE = HF
Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)
Vậy tam giác AHF cân tại H.
Gọi I là giao điểm của AD và BC
Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:
BA = BD
Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD
Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)