Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBEC nội tiếpBC là đường kính
Do đó: ΔBEC vuông tại E
Xét (O) có
ΔBDC nội tiếpBC là đường kính
Do đó: ΔBDC vuông tại D
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: AH⊥BC
b: Xét tứ giác AMON có
\(\widehat{AMO}+\widehat{ANO}=180^0\)
Do đó: AMON là tứ giác nội tiếp(1)
Xét tứ giác AKON có
\(\widehat{AKO}+\widehat{ANO}=180^0\)
Do đó: AKON là tứ giác nội tiếp(2)
Từ (1), (2) suy ra AMKN là tứ giác nội tiếp
Suy ra: \(\widehat{AKN}=\widehat{AMN}=\widehat{ANM}\)
A B C M D E F I K L G N
Gọi G là đỉnh thứ tư của hình bình hành KMIG. Giao điểm của MG và IK là N.
Do tứ giác KMIG là hình bình hành nên MI = KG và ^MKG + ^KMI = 1800 hay ^MKG + ^EMD = 1800
Ta có: \(\frac{MI}{BC}=\frac{MK}{AC}\). Do MI = KG nên \(\frac{KG}{BC}=\frac{MK}{AC}\)
Xét tứ giác CDME có: ^CDM = ^CEM = 900 => ^ECD + ^EMD = 1800. Mà ^MKG + ^EMD = 1800 (cmt)
Nên ^ECD = ^MKG hay ^ACB = ^MKG
Xét \(\Delta\)ABC và \(\Delta\)MGK có: \(\frac{GK}{BC}=\frac{MK}{AC}\); ^ACB = ^MKG => \(\Delta\)ABC ~ \(\Delta\)MGK (c.g.c)
=> ^BAC = ^GMK và \(\frac{MG}{AB}=\frac{MK}{AC}\)
Lại có: \(\frac{MK}{AC}=\frac{ML}{AB};\frac{MG}{AB}=\frac{MK}{AC}\)(cmt) => \(\frac{ML}{AB}=\frac{MG}{AB}\)=> ML = MG
Ta thấy: Tứ giác AFME có ^AFM = ^AEM = 900 => ^FAE + ^FME = 1800 . Mà ^FAE = ^BAC = ^GMK (cmt)
Nên ^GMK + ^FME = 1800 => G;M;F thẳng hàng. Hay G;M;I thẳng hàng
Mặt khác: N là trung điểm KI và MG (T/c hbh) => Điểm M nằm trên trung tuyến LN của \(\Delta\)IKL (1)
MG = ML; MN = 1/2.MG (cmt) => MN=1/2.ML (2)
Từ (1) và (2) => M là trọng tâm của \(\Delta\)IKL (đpcm).