Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N là trung điểm của AC.
Ta dễ dàng chứng minh được tam giác BMC = tam giác CNB (c.g.c)
=> BN = CM
Lại có: BN là đg trung bình tam giác ADC => BN = 1/2 DC
Vậy CM = 1/2 DC (đpcm)
Dựng HBH ACBE =>CM=1/2 CE ta chỉ cần Chứng minh CE=CD
goc(EBC)=goc(EBA)+goc(CBA)
goc(DBC)=Goc(EBA)+goc(ACB) vì Tam giác ABC cân tại A nên
goc (CBA)=goc(ACB) => goc (EBC)=goc(DBC) lại có BD=BE=b nên
E đối xứng D qua BC hay BC là trung trực CD (có thể CM tam giác BED
cân tại B, BC là đường phân giác nên cũng là trung trực)
=> CD=CE
Vậy CM=1/2 CD
Dựng HBH ACBE =>CM=1/2 CE ta chỉ cần Chứng minh CE=CD
goc(EBC)=goc(EBA)+goc(CBA)
goc(DBC)=Goc(EBA)+goc(ACB) vì Tam giác ABC cân tại A nên
goc (CBA)=goc(ACB) => goc (EBC)=goc(DBC) lại có BD=BE=b nên
E đối xứng D qua BC hay BC là trung trực CD (có thể CM tam giác BED
cân tại B, BC là đường phân giác nên cũng là trung trực)
=> CD=CE
Vậy CD =2CM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}BM=MC\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BCD}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}CD\\ c,\left\{{}\begin{matrix}BM=MC\\\widehat{AMC}=\widehat{BMD}\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow\widehat{ACB}=\widehat{CBD}\\ \text{Mà 2 góc này ở vị trí slt nên }AC\text{//}BD\)