Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AB}{AC}=\dfrac{1}{2}\)
Ta có: BD+CD=BC(D nằm giữa B và C)
nên BC=2+4=6(cm)Xét ΔABC có
AF là đường phân giác góc ngoài ứng với cạnh BC(gt)
nên \(\dfrac{FB}{FC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác góc ngoài)
\(\Leftrightarrow\dfrac{FC}{FB}=\dfrac{AC}{AB}=2\)
\(\Leftrightarrow\dfrac{FC-FB}{FB}=\dfrac{AC-AB}{AB}\)
\(\Leftrightarrow\dfrac{BC}{FB}=1\)
hay FB=6(cm)
Ta có: FB+BD=FD(B nằm giữa F và D)
nên FD=6+2=8(cm)
Vậy: FD=8cm
a) áp dụng định lí pitago vào tam giác abc được ab2 +ac2=bc2 suy ra bc2= 32+42=25 suy ra bc=5
có bd là phân giác góc abc nên ab/ad=bc/dc
dùng tính chất dãy tỉ số bằng nhau ta có ab/ad=bc/dc=(ab+bc)/(ad+dc)=(3+5)/4=2
nên ad=ab/2=3/2
dc=bc/2=5/2
b) dựa vào số đo độ đài cm được ec/ac=dc/bc
xét tam giác abc vuông và tam giác edc vuông có góc c chung và ea/ac=dc/bc nên suy ra 2 tam giác đó đồng dạng
c) tg abc và tg edc đồng dạng suy ra de vuông góc với bc
bd là phân giác abc có de vuông góc với bc, da vuông góc với ab nên suy ra de=da (tính châts này đã học ở lớp 7)
Lời giải:
a)
Vì $K$ nằm trên đường trung trực của $AD$ nên $KA=KD$
\(\Rightarrow \triangle KAD\) cân tại $K$
\(\Rightarrow \widehat{KDA}=\widehat{KAD}\)
Mà: \(\widehat{BAD}=\widehat{CAD}\) (do $AD$ là tia phân giác góc A)
\(\Rightarrow \widehat{KDA}+\widehat{BAD}=\widehat{KAD}+\widehat{CAD}\)
\(\Leftrightarrow \widehat{ABK}=\widehat{CAK}\)
Xét tam giác $ABK$ và $CAK$ có:
\(\left\{\begin{matrix} \widehat{K}-\text{chung}\\ \widehat{ABK}=\widehat{CAK}(cmt)\end{matrix}\right.\Rightarrow \triangle ABK\sim \triangle CAK(g.g)\)
\(\Rightarrow \frac{AK}{CK}=\frac{BK}{AK}\Rightarrow KA^2=KB.KC\) (đpcm)
b)
Theo kết quả phần a:
\(KA^2=KB.KC\). Mà $KA=KD$ nên:
\(KD^2=KB.KC\)
\(\Leftrightarrow (KB+BD)^2=KB(KB+BC)\)
\(\Leftrightarrow (KB+2)^2=KB(KB+5)\)
\(\Leftrightarrow KB=4\) (cm)
Do đó:
\(KD=KB+BD=4+2=6\) (cm)
Vậy.........