K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
26 tháng 2 2021

A B C D E F H K

a. ta có \(\hept{\begin{cases}\widehat{ADB}=\widehat{CFB}=90^0\\\widehat{ABD}=\widehat{CBF}\end{cases}\Rightarrow\Delta ABD~\Delta CBF\left(g.g\right)}\)

b.Ta có \(\hept{\begin{cases}\widehat{AFH}=\widehat{CDH}=90^0\\\widehat{AHF}=\widehat{CHD}\text{ (đối đỉnh)}\end{cases}\Rightarrow\Delta AHF~\Delta CHD\left(g.g\right)}\)\(\Rightarrow\frac{AH}{HF}=\frac{CH}{HD}\Rightarrow AH.HD=CH.HF\)

c. từ câu a ta có \(\frac{BD}{BF}=\frac{BA}{BC}\Rightarrow\Delta BDF~\Delta BAC\left(c.g.c\right)\)

28 tháng 2 2021

đúng 6 sai 1

loading...  loading...  

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

21 tháng 4 2017

Ban tu ve hinh, minh chi giai cau d)

Ta co : AH.HD=CH.HF ( cmt ) ==> HF/AH=HD/HC

Xét tg FHD va tg AHC co :

goc FHD = AHC ( đđ ) va HF/AH = HD/HC ( cmt )

==> tg FHD ~ AHC ( c-g-c )

==> goc FDH = ACH

Xét tg ADC vuong tai D va

tg AEH vuong tai E co :

goc A chung

==> tg ADC ~ AEH ( g-g )

==> AD/AE = AC/AH ==> AD/AC = AE/AH

Xét tg ADE va tg ACH co :

goc A chung va AD/AC = AE/AH ( cmt )

==> tg ADE ~ ACH ( c-g-c )

==> goc ADE = ACH hay goc HDE = ACH

Ta co : goc HDE = ACH ( cmt ) va goc FDH = ACH ( cmt )

==> goc HDE = FDH hay DH la tia p/g goc FDE

Xét tg FDK co : DH la tia p/g goc FDE ( cmt )

==> HF/HK = FD/KD ( t/c tic p/g ) (1)

Ta co : HD la tia p/g goc FDE va HD⊥DC ( AD⊥DC, H ∈ AD )

==> DC la tia p/g ngoai goc FDE

Xét tg FDE co : DC

21 tháng 4 2017

tiep tuc :

Xét tg FDE co : DC la tia p/g ngoai goc FDE

==> CF/CK = FD/DK ( t/c tia p/g ) (2)

Tu (1) va (2) ==> HF/HK = CF/CK ==> HF.CK = HK.CF

11 tháng 3 2023

hình tự kẻ ạ :3

a)

xét ΔABE và ΔACF có:

\(\left\{{}\begin{matrix}\widehat{A}\left(chung\right)\\\widehat{AFC}=\widehat{AEB}=90^0\left(CF\perp AB;BE\perp AC\right)\end{matrix}\right.\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{AB}=\dfrac{AF}{AE}\Leftrightarrow AC.AE=AB.AF\)

 

11 tháng 3 2023

ý b hình như sai đề r ạ =))