Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
b: Vì \(AE\cdot AB=AF\cdot AC\)
nên AE/AC=AF/AB
Xét ΔAEF và ΔACB có
AE/AC=AF/AB
góc CAB chung
Do đó: ΔAEF\(\sim\)ΔACB
a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
góc EAH chung
=> ΔAEH đồng dạng với ΔAHB
b: ΔAHB vuông tại H có HE vuông góc AB
nên AH^2=AE*AB
ΔAHC vuông tại H
mà HF là đường cao
nên AF*AC=AH^2=AE*AB
c: AE*AB=AF*AC
=>AE/AC=AF/AB
=> ΔAEF đồng dạng với ΔACB
d: Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=> ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME*MF=MB*MC
Lời giải:
Bạn tự vẽ hình giùm mình nhé.
a) Xét tam giác $BAC$ và $BHA$ có:
\(\left\{\begin{matrix} \widehat{BAC}=\widehat{BHA}=90^0\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle BAC\sim \triangle BHA(g.g)\)
b)
Xét tam giác $BAC$ và $AHC$ có:
\(\left\{\begin{matrix} \widehat{BAC}=\widehat{AHC}=90^0\\ \text{chung góc C}\end{matrix}\right.\Rightarrow \triangle BAC\sim \triangle AHC(g.g)\)
\(\Rightarrow \frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC\)
c)
Xét tam giác $HEA$ và $BHA$ có:
\(\left\{\begin{matrix} \widehat{HEA}=\widehat{BHA}=90^0\\ \widehat{EHA}=\widehat{HBA}(=90^0-\widehat{BHE})\end{matrix}\right.\)
\(\Rightarrow \triangle HEA\sim \triangle BHA(g.g)\)
\(\Rightarrow \frac{HA}{EA}=\frac{BA}{HA}\Rightarrow HA^2=AE.AB(1)\)
Hoàn toàn TT ta có: \(\triangle HFA\sim \triangle CHA\Rightarrow \frac{HA}{FA}=\frac{CA}{HA}\)
\(\Rightarrow HA^2=AF.AC(2)\)
Từ \((1)(2)\Rightarrow AF.AC=AE.AB\Rightarrow \frac{AE}{AF}=\frac{AC}{AB}\)
Tam giác $AFE$ và $ABC$ có:
\(\left\{\begin{matrix} \frac{AE}{AF}=\frac{AC}{AB}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle AFE\sim \triangle ABC(c.g.c)\)
d)
Có: \(\widehat{MEB}=\widehat{AEF}=\widehat{ACB}\) (do \(\triangle AFE\sim \triangle ABC\) )
Xét tam giác $MEB$ và $MCF$ có:
\(\left\{\begin{matrix} \text{chung góc M}\\ \widehat{MEB}=\widehat{MCF}\end{matrix}\right.\Rightarrow \triangle MEB\sim \triangle MCF(g.g)\)
\(\Rightarrow \frac{ME}{MB}=\frac{MC}{MF}\Rightarrow ME.MF=MB.MC\)
a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=4,8\left(cm\right)\)
b) Xét tam giác AEH và tam giác AHB có:
\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)
c) Xét tam giác AHC và tam giác AFH có:
\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)
\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ )
\(\Rightarrow AH^2=AC.AF\)
d) Xét tứ giác AEHF có:
\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)
\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )
\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)
Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)
\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)
Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)
Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)
Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)
Xét tam giác ABC và tam giác AFE có:
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)
e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)
Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC
\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc) (6)
Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF
\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc) (7)
Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)
\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)