Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔADM có
AB=AD
góc BAM=góc DAM
AM chung
Do đó: ΔABM=ΔADM
SUy ra: MB=MD
b: Xét ΔDAK và ΔBAC có
góc ADK=góc ABC
AD=AB
góc DAK chung
Do đó: ΔDAK=ΔBAC
c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A
d: Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
mà AB<AC
nên BM<CM
a) Xét tam giác ABM và tam giác ADM có:
AB = AD ( gt ), góc BAM = góc DAM ( gt ) , AM chung
=> tam giác ABM = tam giác ADM ( c.g.c )
=> BM = DM ( 2 cạnh tương ứng )
b) Vì tam giác ABM = tam giác ADM ( cmt )
=> góc ADM = góc ABM ( 2 góc tương ứng )
Xét tam giác DAK và tam giác BAC có :
góc A chung, AB = AD ( gt ), góc ADK = góc ABC (cmt)
=> tam giác DAK = tam giác BAC ( g.c.g )
c) Vì tam giác DAK = tam giác BAC ( cmt )
=> AK = AC ( 2 cạnh tương ứng )
=> tam giác AKC cân tại A
d) Xét tam giác ABC có AM là phân giác
\(\Rightarrow\frac{BM}{AB}=\frac{MC}{AC}\)
Mà AB < AC (gt). Giả sử AB.k = AC
\(\Rightarrow\frac{BM.k}{AB.k}=\frac{MC}{AC}\)( k thuộc N* )
=> BM.k = MC
Mà k thuộc N* => BM < MC
a) Xét \(\Delta BAM\)và \(\Delta DAM\):
\(DA=BA\)
\(\widehat{BAM}=\widehat{DAM}\)
\(AM\)chung
\(\Rightarrow\Delta BAM=\Delta DAM\left(c.g.c\right)\)
\(\Rightarrow BM=DM\)(hai cạnh tương ứng)
b) \(\Delta BAM=\Delta DAM\Rightarrow\widehat{ABM}=\widehat{ADM}\)(hai góc tương ứng)
Xét \(\Delta BAC\)và \(\Delta DAK\):
\(BA=DA\)
\(\widehat{A}\)chung
\(\widehat{ABM}=\widehat{ADM}\)
\(\Rightarrow\Delta BAC=\Delta DAK\left(g.c.g\right)\)
c) \(\Delta BAC=\Delta DAK\Rightarrow AC=AK\)(hai cạnh tương ứng)
\(\Rightarrow\Delta AKC\)cân tại \(A\).
d) \(\Delta ABC\)có phân giác \(AM\)nên \(\frac{BM}{AB}=\frac{CM}{AC}\)mà \(AB< AC\Rightarrow BM< CM\).
a: Xét ΔABM và ΔADM có
AB=AD
góc BAM=góc DAM
AM chung
Do đó: ΔABM=ΔADM
SUy ra: MB=MD
b: Xét ΔDAK và ΔBAC có
góc ADK=góc ABC
AD=AB
góc DAK chung
Do đó: ΔDAK=ΔBAC
c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A
d: Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
mà AB<AC
nên BM<CM
A) c/m \(\Delta\)ABM = \(\Delta\)AMD ( c g c ) => BM=MD
B) DAK = \(\Delta\)BAC c g c
C) VÌ \(\Delta\)DAK = \(\Delta\)BAC => KB=DC mà AB=AD gt => AB+ BK = AD+ DC = AK=AC => \(\Delta\)AKC cân tại A
d)
cặp \(\Delta\)= nhau câu a => GÓC ABM=AMD ( góc tg ung ) => góc KBM = CDM ( vì cùng bù với góc KBM và góc CDM )
góc BMK =CMD (đối đỉnh ) , BM=MD câu a => \(\Delta\)KBM = \(\Delta\)CDM g c g => KM=MC
VÌ AB< AC => GÓC C < B mà GÓC C = K < B => BM < KM =CM