\(D\in AC\) ....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Xét tam giác BAD(BAD = 90O ) và tam giác BEC(BEC = 90O ) có :

ABD = EBC ( vì BD là đường p/g)

=) tam giác BAD đồng dạng với tam giác BEC

=)BA/BE = BD/BC

=) BA.BC = BE.BD

14 tháng 3 2017

giải

Xét tam giác ABC có BD là đường p/giác

=) AB/BC = AD/DC

=) AB+BC/BC = AD+DC/DC

=) 6+10/10 = 8/DC

=) DC = 10x8/16 = 5(cm)

=) AD = 8 - 5 = 3(cm)

a: Xét ΔBAC có BD là phân giác

nên DA/AB=DC/BC

=>DA/3=DC/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{8}{8}=1\)

Do đó: DA=3cm; DC=5cm

b: Xét ΔBAD vuông tại A và ΔBEC vuông tại E có

\(\widehat{ABD}=\widehat{EBC}\)

Do đó: ΔBAD\(\sim\)ΔBEC

Suy ra: BA/BE=BD/BC

hay \(BA\cdot BC=BE\cdot BD\)

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).

28 tháng 2 2020

A B C H D E F

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)

\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)

b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)

\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)

Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)

\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)

\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)

13 tháng 2 2021

a, Xét △ ABC vuông tại A có: 

BC2 = AC2 + AB2 (định lý Pytago)

=> BC2 = 62 + 82 = 100

=> BC = 10 cm

Vì AD là phân giác \(\widehat{BAC}\) (gt)

\(\Rightarrow\frac{CD}{AC}=\frac{BD}{AB}=\frac{CD+BD}{AC+AB}=\frac{BC}{6+8}=\frac{10}{14}=\frac{5}{7}\)(áp dụng t/c dãy tỉ số bằng nhau)

Do đó: \(\frac{CD}{AC}=\frac{5}{7}\) \(\Rightarrow\frac{CD}{6}=\frac{5}{7}\) \(\Rightarrow CD=\frac{6.5}{7}=\frac{30}{7}\)(cm)

\(\frac{BD}{AB}=\frac{5}{7}\)\(\Rightarrow\frac{BD}{8}=\frac{5}{7}\)\(\Rightarrow BD=\frac{8.5}{7}=\frac{40}{7}\)(cm)

b, Xét △AHB vuông tại H và △AEH vuông tại E

Có: \(\widehat{HAB}\)là góc chung

=> △AHB ᔕ △AEH (g.g)

\(\Rightarrow\frac{AH}{AE}=\frac{AB}{AH}\)

=> AH . AH = AE . AB

=> AH2 = AE . AB

c, Xét △AHC vuông tại H và △AFH vuông tại F

Có: \(\widehat{HAC}\)là góc chung

=> △AHC ᔕ △AFH (g.g)

\(\Rightarrow\frac{AH}{AF}=\frac{AC}{AH}\)

=> AH2 = AF . AC

mà AH2 = AE . AB (cmt)

=> AE . AB = AF . AC

28 tháng 2 2021

A B C 9 12 D E

a, Xét tam giác ABC và tam giác EDC ta có : 

^C _ chung 

\(\frac{BC}{DC}=\frac{AC}{EC}\)

^BAE = ^CED = 90^0 

=> tam giác ABC ~ tam giác CED ( g.c.g ) 

HAB ? ^H ở đâu bạn ? 

b, Vì AD là tia phân giác tam giác ABC ta có : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)

hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé 

c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét : 

\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính 

d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số