K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

Áp dụng định lí pitago vào tgiac ABH vuông tại H có:

   BH^2=AB^2-AH^2=!3^2-12^2=25

=>BH=5(cm)

Áp dụng định lí pitago vào tam giác AHC vuông tại H có:

    AC^2=AH^2+HC^2=12^2+16^2=400

=> AC=20(cm)

Ta có HM=AM=MC( vì trong một tam giác vuông đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền)

 => HM=10(cm)

 *** cho mk nha ^^!

30 tháng 11 2016

Hình như thiếu cạnh BC bạn ạ

22 tháng 11 2016

Bài 4:

Gọi M là giao điểm của EF với BC, N là giao điểm của DF với AB, ta có:
Ta có: DF vuông góc với AH
BC vuông góc với AH
DF song song với BC (hay BM)   (2 góc trong cùng phía)
Mà  là góc ngoài của  nên 
 
 
 AB song song với MF (hay EF) (vì có 2 góc đồng vị bằng nhau) (1)
  (2 góc so le trong)

Xét  và  có:
 
AH = DE (vì AD +DH = DH + HE)
 (ch/minh trên)
  (cạnh góc vuông - góc nhọn)  DF = BH (2 cạnh tương ứng)
Xét  và  có:

HE = AD (gt)
BH = DF (ch/minh trên)

  (2 cạnh góc vuông)   (2 góc tương ứng)
 BE song song với AF (hay AC) (vì có 2 góc so le trong bằng nhau) (2)
Mặt khác:   BA vuông góc với AC (3)
Từ (1), (2) và (3) suy ra: BE vuông góc với EF (đpcm)

14 tháng 3 2020

ccccccccccccccccccccccccccccccccccccccc

23 tháng 4 2017

Hình tự vẽ

Xét \(\Delta MBH\)và \(\Delta NCH\)

\(\widehat{BMH}=\widehat{CNH}=90^o\)

\(BH=CH\left(cma\right)\)

\(\widehat{NBH}=\widehat{NQH}\)(Tam giác ABC cân tại A

\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right)\)

\(MH=NH\left(2ctu\right)_{\left(1\right)}\)

Xét \(\Delta BQH\)và \(\Delta CNH\)

\(\widehat{Q}=\widehat{CNH}=90^o\)

\(BH=CH\left(cma\right)\)

\(\widehat{BHQ}=\widehat{NHC}\)(đối đỉnh)

\(\Rightarrow\Delta BQH=\Delta CNH\left(ch-gn\right)\)

\(\Rightarrow QH=NH\left(2ctu\right)_{\left(2\right)}\)

Từ \(\left(1\right),\left(2\right)\Rightarrow MH=QH\)

=> \(\Delta HQM\)cân tại H

19 tháng 1 2016

Xét tam giác AHC có góc AHC=90

=>Tam giác AHC vuông tai H 

Áp dụng định lí Py ta go cho tam giác AHC , ta có 

AH^2+HC^2=AC^2

=>12^2+16^2=AC^2

=>400=AC^2

=>AC=20(cm)

Áp dụng định lí Py ta go cho tam giác AHB , ta có 

AH^2+HB^2=AB^2

=>12^2+HB^2=13^2

=>HB^2=25

=>HB=5(cm)

Ta có BH+HC=BC

=>5+16=BC

=>BC=21 (cm)

Vậy AC=20cm ; BC=21cm

10 tháng 8 2015

Ta có : AC^2=AH^2+HC^2 (định lí Pytago trong tam giác vuông ACH)

AC^2=12^2+16^2 AC^2=144+256 AC^2=400 AC=Căn 400=20(cm)

Ta có : AB^2=AH^2+HB^2 (định lí Pytago trong tam giác vuông ABH) 13^2=12^2+HB^2 169=144+HB^2 HB^2=169-144 HB^2=25

HB=Căn 25=5(cm) Ta có : BC=HB+HC BC=5+16 BC=21(cm)

10 tháng 8 2015

A B C H (Hình minh hoạ) AB = 13 cm, AH = 12 cm, HC = 16 cm

AH vuông góc với BC   => Tam giác ABH  và tam giác ACH vuông tại A

Áp dụng định lí Pi- ta - go trong tam giác AHC, có: 

     AC2 = AH2 + HC2

     AC2 = 122 + 162 = 400       => AC = 20 cm

Áp dụng đinh lí Pi - ta -go trong tam giác ABH, có:

    AB2 = AH2 + BH2

   132 = 122 + BH2           =>  BH2 = 132 - 122 = 25        => BH = 5 cm

   mà  HC + BH = BC  

          16  + 5   = 21 = BC

Vậy AC = 20 cm,  BC = 21 cm

24 tháng 4 2019

a/ Xét tam giác ABH vuông tại H và tam giác AHC vuông tại H

. AB = AC ( tam giác ABC cân tại A )

. AH là cạnh chung

Suy ra tam giác ABH = tam giác AHC ( cạnh huyền - cạnh góc vuông )

Mà H thuộc BC

Suy ra H là trung điểm của BC

Suy ra BH = BC ( 2 cạnh tương ứng )

b/ Xét tam giác AHC vuông tại H có 

AC2 = AH2 + HC2 ( định lý pytago )

132 = 122 + HC2

169= 144 + HC2

HC2 = 169 -144

HC2 = 25

HC =\(\sqrt{25}\)

HC = 5 cm

=> Bc =HC .2 =10cm

Vậy BC = 10cm

c/ Xét tam giác AEM vuông tại M và tam giác EMB vuông tại M

. EM là cạnh chung

.AM = MB ( M là trung điểm )

=> Tam giác AEM = tam giác EMB ( cạnh huyền - cạnh góc vuông )

=> A1 = B1 ( 2 góc ở đáy )

=> AE =BE  ( 2 cạnh tương ứng )

=> Tam giác AEB cân tại E

d/ Ta có:

. A1 = A2 ( tam giác ABH = tam giác ACH )

. B1 = A ( tam giác ABE cân )

=> B1 = A1

Xét tam giác BDE và tam giác AFE có

. BD = AF ( gt )

. BE = AE ( tam giác ABE cân tại E )

.B = A1 ( cmt )

=> Tam giác DEB = tam giác AFE( c.g.c )

=> ED = EF ( 2 cạnh tương ứng )

Tam giác DEF có

DE + EF > DF ( bất đẳng thức tam giác)

Mà DE = EF ( cmt )

=> EF + EF > DF

=> 2EF > DF

=> EF > \(\frac{DF}{2}\)

Ta có : AC^2=AH^2+HC^2 (định lí Pytago trong tam giác vuông ACH) AC^2=12^2+16^2 AC^2=144+256 AC^2=400 AC=Căn 400=20(cm) Ta có : AB^2=AH^2+HB^2 (định lí Pytago trong tam giác vuông ABH) 13^2=12^2+HB^2 169=144+HB^2 HB^2=169-144 HB^2=25 HB=Căn 25=5(cm) Ta có : BC=HB+HC BC=5+16 BC=21(cm)

17 tháng 1 2016

áp dụng pitago tính đc BH cộng đoạn thẳng tính đc BC,áp dụng pitago tính đc AC

6 tháng 11 2017

AC^2=AH^2+HC^2(py ta go)

AC^2=144+256=200 cm

suy ra AC=20 cm

AB^2=AH^2+BH^2

BH^2=AB^2-AH^2

BH^2=1169-144=25cm

BH=5cm

Mà BH+HC=BC suy ra 5+16=21

vạy AC=20 cm, BC=21cm

AC = 20

BC = 21

k cho mk nha

31 tháng 3 2018

Giải bài 60 trang 133 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng định lí Pi-ta-go trong ΔAHC vuông tại H ta có:

AC2 = AH2 + HC2 = 122 + 162 = 144 + 256 = 400

⇒ AC = 20 (cm)

Áp dụng định lí Pi-ta-go trong ΔAHB vuông tại H ta có:

BH2 + AH2 = AB2 ⇒ BH2 = AB2 - AH2 = 132 - 122 = 169 -144 = 25

⇒ BH = 5cm

Do đó BC = BH + HC = 5 + 16 = 21 (cm)