K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

 a,Tứ giác AEHG  la hình chữ nhật.thật vậy:

xét tứ giác AEHG có goc a=90 độ ,góc E=90 độ(HE VUÔNG GÓC VỚI AB) , góc H=90 độ (AH vuông góc với BC)

suy ra tứ giác AEHG la hình chữ nhật

b,xét tam giac BHA có AH^2=AE*AB (1)

xét tam giác AHC có AH^2=AF*AC (2)

Từ (1) và (2) suy ra AE*AB=AF*AC

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

b: Xét tứ giác DHEF có 

HE//DF

HE=DF

Do đó: DHEF là hình bình hành

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: FA=FD

FA=HE

=>HE=FD

Xét tứ giác HEFD có

HE//FD

HE=FD

=>HEFD là hình bình hành

c: Sửa đề: MP vuông góc AB

M đối xứng G qua AB

=>MG vuông góc AB tại trung điểm của MG

=>MG vuông góc AB tại P và P là trung điểm của MG

XétΔABC có

M là trung điểm của BC

MP//AC

=>P là trung điểm của AB

Xét tứ giác AMBG có

P là trung điểm chung của AB và MG

MA=MB

=>AMBG là hình thoi

M đối xứng K qua AC

=>MK vuông góc AC tại trung điểm của MK

=>Q là trung điểm của MK

Xét ΔABC có

M là trung điểm của BC

MQ//AB

=>Q là trung điểm của AC

Xét tứ giác AMCK có

Q là trung điểm chung của AC và MK

MA=MC

=>AMCK là hình thoi

14 tháng 12 2021

undefined

a, Vì HE ⊥ AB ; FA ⊥ AB => HE // FA (từ ⊥ đến // )

+, EA ⊥ AC ; HF ⊥ AC => EA // HF (từ ⊥ đến // )

Xét tứ giác AEHF có: HE // FA (cmt) ; EA // HF (cmt)

=> Tứ giác AEHF là hình bình hành (dhnb)

 mà \(\hat{EAF} =90^0\)

=> Tứ giác AEHF là hình chữ nhật

=> AH = EF

b, Vì AEHF là hình chữ nhật (cmt)

=> EH//AF;  EH = AF mà AF= FK (gt)

=> EH = FK

+, Xét tứ giác EHKF có: EH = FK (cmt)

                                 EH // FK (do EH // AF; K ∈ AF)

=> Tứ giác EHKF là hình bình hành (dhnb)