Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ax là phân giác của góc BAC (gt)
K thuộc Ax
KE _|_ AB (gt); KF _|_ AC (gt)
=> KE = KF (định lí) (1)
K thuộc đường trung trực của BC (gt)
=> KB = KC (Định lí)
xét tam giác EKB và tam giác FKC có : góc BEK = góc KFC = 90
=> tam giác EKB = tam giác FKC (ch-cgv)
=> BE = CF (đn)
a ) Ta có Ax là đường trung trực của tam giác ABC => Ax là đường trung trực của tam giác ABC
Xét tam giác BEK vuông tại E và tam giác CFK vuông tại F ta có :
BK = KC ( cmt )
BKE = CKF ( đối đỉnh )
=> Tam giác BEK = tam giác CFK
=> BE = CF ( 2 cạnh tương ứng )
mik chỉ làm đc câu a thoi maf hình như đề bị sai á
a, +) Xét \(\Delta OAE\) và \(\Delta OAF\) có:
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
OA là cạnh chung
\(\Rightarrow\Delta OAE=\Delta OAF\) (cạnh huyền, góc nhọn)
=> OE = OF và AE = À
+) Xét \(\Delta OPB\) và \(\Delta OPC\) có:
BP = PC (gt)
\(\widehat{BPO}=\widehat{CPO}=90^o\) (vì OP là trung trực của BC)
OP là cạnh chung
\(\Rightarrow\Delta OPB=\Delta OPC\left(c.g.c\right)\)
=> OB = OC
+) Xét \(\Delta BOE\) và \(\Delta COF\) có:
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
OB = OC (cmt)
OE = OF (cmt)
\(\Rightarrow\Delta BOE=\Delta COF\) (cạnh huyền, cạnh góc vuông)
=> BE = CF (đpcm)
b, Kẻ BD // AC (D \(\in\) EF)
\(\Rightarrow\widehat{BDM}=\widehat{MFC};\widehat{MBD}=\widehat{MCF}\) (so le trong)
Vì \(\Delta AEF\) cân (AE = AF) => \(\hept{\begin{cases}\widehat{BDE}=\widehat{AFE}\\\widehat{BED}=\widehat{AFE}\end{cases}\Rightarrow\widehat{BDE}=\widehat{BED}}\) => \(\Delta BED\) cân => BE = BD = CF (vì BE = CF)
Xét \(\Delta MBD\) và \(\Delta MCF\) có:
\(\widehat{MBD}=\widehat{MCF}\)
BD = CF (cmt)
\(\widehat{BDM}=\widehat{MFC}\)
\(\Rightarrow\Delta MBD=\Delta MCF\) (g.c.g)
=> MB = MC
=> M là trung điểm của BC (đpcm)
c, Xét \(\Delta AEI\)và \(\Delta AFI\) có:
AE = AF
góc A1 = góc A2
AI là cạnh chung
\(\Rightarrow\Delta AEI=\Delta AFI\left(c.g.c\right)\)
=> góc AIE = góc ÀI
Mà góc AIE và góc AIF kề bù => \(\widehat{AIE}=\widehat{AIF}=90^o\Rightarrow AO⊥EF\) tại I
Áp dụng định lý Py-ta-go vào các tam giác vuông:
\(\Delta IAE\) có \(\widehat{I}=90^o\Rightarrow IA^2+IE^2=AE^2\left(1\right)\)
\(\Delta IAF\) có \(\widehat{I}=90^o\Rightarrow IA^2+IF^2=AF^2\left(2\right)\)
\(\Delta IOE\) có \(\widehat{I}=90^o\Rightarrow IE^2+IO^2=EO^2\left(3\right)\)
\(\Delta IOF\) có \(\widehat{I}=90^o\Rightarrow IF^2+IO^2=OF^2\left(4\right)\)
Cộng (1),(2),(3),(4) vế với vế ta được:
\(2\left(IA^2+IE^2+IO^2+IF^2\right)=\left(AE^2+EO^2\right)+\left(AF^2+OF^2\right)\)
\(\Delta AEO\)vuông ở E nên \(AE^2+EO^2=AO^2\) (5)
\(\Delta AFO\)vuông ở F nên \(AF^2+OF^2=AO^2\) (6)
Từ (5) và (6) => \(2\left(IA^2+IE^2+IF^2+IO^2\right)=AO^2+AO^2=2AO^2\) hay \(IA^2+IE^2+IO^2+IF^2=AO^2\) (đpcm)
a: Ta có: ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC
nên AD là đường cao ứng với cạnh BC
Xét ΔABC có
AD là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
AD cắt BE tại H
Do đó: H là trực tâm của ΔBAC
Suy ra: CH\(\perp\)AB
Cảm ơn bạn!
Nhưng mình biết làm câu a với b rồi bạn làm cho mình câu c với d với
refer
a)
ta có: AC=EC
ECA=60
=> tam giác AEC đều
b)
ta có tam giấcEC đều => EA=AC=EC
ABC=90-60=30
BAE=90-60=30
=> tam giác ABE cân tại E => BE=EA mà EA=AC=> BE=AC
c)
theo câu b, ta có tam giác ABE cân tại E=> __BE=EA
|__EBA=EAB
xét 2 tam giác vuông BEF và AEF cso:
EA=EB(cmt)
EBA=EAB(cmt)
=> tam giác BEF AEF(CH-GN)
=> FB=FA=> F là trung điểm của AB
d) ta có: tính chất trong 1 tam giác vuông cạnh đối diện góc 30 độ = nửa cạnh huyền
=> AC=1/2 BC=1/2 x6=3(cm)