K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔKBC vuông tại K và ΔHCB vuông tại H có 

BC chung

\(\widehat{KBC}=\widehat{HCB}\)(hai góc ở đáy của ΔBAC cân tại A)

Do đó: ΔKBC=ΔHCB(cạnh huyền-góc nhọn)

Suy ra: BK=CH(hai cạnh tương ứng)

b) Ta có: AK+KB=AB(K nằm giữa A và B)

AH+HC=AC(H nằm giữa A và C)

mà KB=HC(cmt)

và AB=AC(ΔABC cân tại A)

nên AK=AH

Xét ΔABC có

K\(\in\)AB(gt)

H\(\in\)AC(gt)

\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\left(\dfrac{AK}{AH}=\dfrac{AB}{AC}=1\right)\)

Do đó: KH//BC(Định lí Ta lét đảo)

28 tháng 7 2019

Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

30 tháng 3 2018

a)  Xét 2 tam giác vuông:  \(\Delta KBC\) và    \(\Delta HCB\)

\(\widehat{KBC}=\widehat{HCB}\) 

\(BC\)  chung

suy ra:    \(\Delta KBC=\Delta HCB\)(ch_gn)

\(\Rightarrow\)\(BK=CH\)

b)   \(AB=AC\)    VÀ        \(BK=CH\)

\(\Rightarrow\)\(\frac{BK}{AB}=\frac{HC}{AC}\)

\(\Rightarrow\)   \(KH//BC\) (theo định lý Ta-lét đảo)

a) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có 

BC chung

\(\widehat{KBC}=\widehat{HCB}\)(ΔABC cân tại A)

Do đó: ΔBKC=ΔCHB(cạnh huyền-góc nhọn)

Suy ra: BK=CH(hai cạnh tương ứng)

b) Xét ΔAIC vuông tại I và ΔBHC vuông tại H có 

\(\widehat{BCH}\) chung

Do đó: ΔAIC\(\sim\)ΔBHC(g-g)

Suy ra: \(\dfrac{CA}{CB}=\dfrac{CI}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CA\cdot CH=CB\cdot CI\)(đpcm)

17 tháng 5 2020

A B C H K I

a, tg ABC cân tại A (gt) => ^ABC = ^ACB (tc)

xét tg HCB và tg KBC có : BC chung

^CHB = ^BKC = 90

=> tg ABC = tg KBC (ch-gn)

=> CH = BK (đn)

=> CH/AB = BK/AB mà AB = AC do tam giác ABC cân tại A (Gt)

=> CH/AC = BK/AB 

=> HK // BC (đl)

b, sửa đề thành HC.AC = BC.IC

xét tg CHB và tg CIA có : ^ACB chung

^CHB = ^AIC = 90

=> tg CHB đồng dạng với tg AIC (g-g)

=> HC/BC = IC/AC (đn) => HC.AC = BC.IC 

c, tg ABC cân tại A (Gt) mà AI là đường cao (gt)

=> AI đồng thời là đtt (đl) => IB = IC = 1/2 BC

mà có : HC.AC = BC.IC (Câu b) ; BC = a; AC = b

=> HC.b = a.a/2  => BC = a^2/2b 

Có AH = AC - HC 

=> AH = b - a^2/2b = (2b^2 - a^2)/2b

mà HK // BC (câu a) nên 

AH/AC = HK/BC  => HK = AH.BC/AC = a/b.(2b^2 - a^2)/2b 

=> HK = (2ab^2 - a^3)/2b^2 = a - a^3/2b^2

17 tháng 5 2020

câu b như bạn Nguyễn Phương Uyên nhé! mình bị nhầm

11 tháng 5 2016

a) Xét tam giác BKC và CHB có:

góc B= góc C (tính chất tam giác cân)

góc BKC = góc BHC = 90 độ

=> Tam giác BKC đồng dạng tam giác CHB

=> \(\frac{BK}{CH}=\frac{BC}{BC}=1=k\)

b) Tam giác BHA đồng dạng tam giác CKA (g-g)

=> \(\frac{HA}{AK}=\frac{BA}{AC}=1\)

=> \(\frac{AK}{AB}=\frac{AH}{AC}\)

=> KH//BC (Định lí Ta - lét đảo)

c) Ta có theo hệ quả Ta-let:

\(\frac{AK}{AB}=\frac{KH}{BC}=>\frac{AK}{b}=\frac{KH}{a}=>KH=\frac{a.AK}{b}\)

Ta có: AK2+KC2=b2  (1)

             KC2+KB2=a2 => KC2+(b-AK)2=a2 =>KC2-2b.AK+AK2=a2 (2)

Trừ 2 cho 1, ta có:   -2b.AK=a2-b2 =>\(AK=\frac{a^2-b^2}{-2b}\)

Từ đó => \(KH=\frac{a\times\frac{a^2-b^2}{-2b}}{b}\)

Ghi dấu vào để hiểu đề

A B C H K

26 tháng 3 2022

△AKC∼△AHB (g-g) \(\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}=\dfrac{AC-CK}{AB-BH}=1\)

\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A.

\(AB\ge BH\Rightarrow AB+CK\ge BH+CK\Rightarrow AC+BH\ge BH+CK\Rightarrow AC\ge CK\)-Dấu bằng xảy ra khi và chỉ khi \(A\equiv H\Leftrightarrow\)△ABC vuông tại A.