Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABE\) và \(\Delta AFE:\)
\(AB=AF\left(gt\right).\)
\(\widehat{BAE}=\widehat{FAE}\) (AD là phân giác \(\widehat{A}).\)
AE chung.
\(\Rightarrow\Delta ABE=\Delta AFE\left(c-g-c\right).\)
b) Xét \(\Delta BEC:\)
\(BE+EC>BC.\left(1\right)\)
Xét \(\Delta ABC:\)
\(AC>AB\left(gt\right).\)
\(\Rightarrow AC-AB< BC.\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) \(BE+EC>AC-AB.\)
trên AB lấy H sao cho AC = AH
xét tam giác AEC và tam giác AEH có : AE chung
^CAE = ^HAE do AE Là pg của ^BAC (Gt)
=> tam giác AEC = tam giác AEH (c-g-c)
=> EC = EH
xét tam giác EHB có HB > BE - EH
=> HB > BE - EC
có HB = AB - AH mà AH = AC (cv) => HB = AB - AC
=> AB - AC > BE - EC
Hình tự vẽ nhá
Lời giải:
trên tia AB lấy điểm N sao cho AN=AC. Do AB>AC nên N nằm giữa A và B
Vậy AB - AC = AB - AN = BN
dễ dàng chứng minh đc tam giác AEN = tam giác AEC (cgc), suy ra EN = EC (2 cạnh tương ứng)
Xét tam giác EBN có: BN > EB - EN (hệ quả của bất đẳng thức trong tam giác)
mà BN = AB - AC ( đã chứng minh)
=> AB - AC > EB - EN
lại có EN = EC (đã chứng minh), suy ra AB - AC > EB - EC ( đpcm)
ko tránh khỏi thiếu sót, nếu sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi
_Hết_
Từ E kẻ EK=AB (K thuộc AC)
Xét tam giác ABE và tam giác AKE, có:
AB=AK(cách vẽ)
Góc BAE = Góc KAE (AD là tia phân giác)
AE là cạnh chung
=>Tam giác ABE = Tam giác AKE (c-g-c)
=> BE=EK (2 cạnh tương ứng)
Ta có: KC>EC-EK (bất đẳng thức tam giác)
mà BE=EK
=> KC>EC-EB
mà KC=AC-AB (cmt)
=> AC-AB>EC-EB