K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD và AB=CD

Xét ΔAMF và ΔDME có 

\(\widehat{FAM}=\widehat{EDM}\)

MA=MD

\(\widehat{AMF}=\widehat{DME}\)

Do đó: ΔAMF=ΔDME

Suy ra: AF=DE
=>AF=1/2AB

hay F là trung điểm của AB

b: Xét tứ giác AFEC có

AF//EC

AF=EC

Do đó: AFEC là hình bình hành

Suy ra: Hai đường chéo AE và FC cắt nhau tại trung điểm của mỗi đường

hay K là trung điểm của FC

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

6 tháng 12 2016

đợi mình 5 phút

6 tháng 12 2016

                                                                                  Giải

a) vì m la trung diểm của BC => BM=MC

Xét tam giac BAM va tam giac MAC có:

AB=AC(dề bài cho)

BM=MC(Chung minh tren)

AM la cạnh chung(de bai cho)

=>Tam giác BAM=tam giac MAC(c.c.c)

b)từ trên

=>góc BAM=góc MAC(hai goc tuong ung)

Tia AM nam giua goc BAC (1)

goc BAM=goc MAC(2)

từ (1) va (2)

=>AM la tia phan giac cua goc BAC

c)Còn nữa ......-->

22 tháng 11 2017
Giúp mình gấp
23 tháng 11 2017

Ta co AB = AC  => Tam giác ABC là tam giác cân tại A 

Kẻ AM 

Xét hai tam giác AMB  và tam giác AMC có:

BM =MC ( Vì M là trung điểm của BC)

gÓC B = góc C ( vì ABC là tam giác cân)

AB = BC ( gt)

=> Tam giác ABM = tam giác AMC ( c.g.c)

18 tháng 12 2015

a )

Xét tam giác ABM và tam giác ACM có:

BM = MC ( vì M là trung điểm của BC )

AM là cạnh chung

AB = AC ( gt )

=> tam giác ABM = tam giác ACM ( c.c.c )

b) Xét tam giác AEH và tam giác CEM có:

EH = EM (gt)

góc AEM = góc MEC (2 góc đối đỉnh )

AE = EC ( vì E là trung điểm của AC ) 

=> tam giác AEK = tam giác CEM (c.g.c)

c) Câu này giải thích nhiều mà tớ không có thời gian nên không ghi ra được. Tích hay không tùy cậu

24 tháng 2 2018

Mình làm câu đầu tiên nhé :)

a) Xét tam giác ABM và tam giác DMC có :

BM = CM ( gt )

\(\widehat{AMB}=\widehat{DMC}\)

AM = DM ( gt )

\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )

Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD