Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)
Do đó: ΔEMB=ΔFMC
=>EM=FM
=>M là trung điểm của EF
#\(N\)
`a,` Xét Tam giác `AMB` và Tam giác `CME` có:
`AM = ME (g``t)`
\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`
`MB = MC (g``t)`
`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`
`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`
`-> AB = CE (2` cạnh tương ứng `)`
Xét Tam giác `ABH` và Tam giác `DBH` có:
`HA = HD (g``t)`
\(\widehat{BHA}=\widehat{BHD}=90^0\)
`BH` chung
`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`
`=> AB = BD (2` cạnh tương ứng `)`
Mà `AB = CE -> BD = CE`
`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:
`HA = HD (g``t)`
\(\widehat{AHM}=\widehat{DHM}=90^0\)
`HM` chung
`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`
`=> AM = DM (2` cạnh tương ứng `)`
Xét Tam giác `AMD` có: `AM = DM`
`->` Tam giác `AMD` là tam giác cân.
Bạn tự vẼ hình nha
Gọi N là giao điểm của CE và AB
Xét CME và BMD có
MB=MC(giả thiết )
MD=ME(giả thiết)
BMD=CME(2 góc đối đỉnh)
Do đó CME=BMD(c.g.c)
=>MBD=MCE => BD // CE
=> DBN+CNB=180 (2 gõc trong cùng phía bù nhau)
=>CNB=180-CNB=180-90=90
Vậy CE vuông góc với AB
xét tam giác EMC và tam giác DMB
có góc EMC=góc DMB
ME=MD(GT)
MB=MC (GT)
=>tam giác EMC=Tam giác DMB(c.g.c)
=>goc CEM= goc DBM (2goc tuong ung)
ma go CEM va Goc DBM la 2 goc SLT
=>AC song song BD
và Góc ABD=90 do (GT)
=> góc AHC =90 do ( 2goc đồng vị )
vậy CE vuông góc với AB tại H
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có
MB=MC
MA=MD
Do đó: ΔMBA=ΔMCD
=>\(\widehat{MBA}=\widehat{MCD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó: ΔBEM=ΔCFM
=>ME=MF
ΔBEM=ΔCFM
=>\(\widehat{BME}=\widehat{CMF}\)
mà \(\widehat{BME}+\widehat{EMC}=180^0\)(hai góc kề bù)
nên \(\widehat{CMF}+\widehat{EMC}=180^0\)
=>F,M,E thẳng hàng
mà MF=ME
nên M là trung điểm của EF
A) Vì tam giác ABC cân tại A nên AB=AB ( 2 cạnh t.ư) và ABC=ACB (2 góc t.ư)
xét tam giác ABM và tam giác ACM
AC=AB (cmt)
ABC= ACB (cmt)
BM=MC
Suy ra tam giác ABM = tam giác ACM ( C.G.C)
B) vì tam giác ABM = tam giác ACM (câu a ) nên AMB= AMC ( 2 góc t.ư)
ta có AMB+AMC = 180độ (2 góc kề bù)
suy ra AMB=AMC =180độ : 2= 90độ
suy ra AM vuông góc với BC
C) Vì AMB và DMC là 2 góc đối đỉnh nên AMB=DMC
Xét tam giác ABM và tam giác DCM
AM=MD
AMB=DMC (2 góc đối đỉnh)
BM = MC
suy ra tam giác AMB= tam giác DMC (C.G.C)
D) Vì tam giác AMB = tam giác DMC (câu c ) nên ABM = MCD ( 2 góc t.ư)
mà 2 góc này ở vị trí SLT nên AB//CD
CHÚC BẠN HỌC TỐT!