Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)
Do đó: AMIN là hình chữ nhật
b: Xét tứ giác ADCI có
N là trung điểm của AC
N là trung điểm của DI
Do đó: ADCI là hình bình hành
mà IA=IC
nên ADCI là hình thoi
A) Tứ giác AMIN là hình chữ nhật. Vì i là trung điểm của BC, nên AM = AN (do đường cao cắt đường trung bình tại trung điểm). Vì iM vuông góc với AB và iN vuông góc với AC, nên AMIN là hình chữ nhật.
B) Lấy D sao cho N là trung điểm của Di. Ta cần chứng minh ADCi là hình thoi.
Vì N là trung điểm của Di, nên DN = Ni. Vì i là trung điểm của BC, nên BN = NC.
Ta có AN = AM (vì AMIN là hình chữ nhật).
Vì AB < AC, nên AM < AN. Khi đó, DN < Ni.
Vì DN = Ni và DN < Ni, nên DNi là đường cao của tam giác ADCi.
Vì DNi là đường cao và AN = AM, nên ADCi là hình thoi.
C) Đường thẳng BN cắt DC tại K. Ta cần chứng minh DK/DC = 1/3.
Vì BN là đường cao của tam giác ADC, nên DK/DC = BK/BC.
Vì BN cắt DC tại K, nên DK + KC = DC.
Vì N là trung điểm của BC, nên BK = KC.
Khi đó, DK/DC = BK/BC = BK/(BK + KC) = BK/(BK + DK) = 1/3 (vì BK = DK).
Vậy, DK/DC = 1/3.
a: Sửa đề: Cho tam giác ABC vuông tại A
Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)
=>AMIN là hình chữ nhật
b: Xét ΔABC có
I là trung điểm của bC
IN//AB
Do đó: N là trung điểm của AC
Xét tứ giác AICD có
N là trung điểm chung của AC và ID
=>AICD là hình bình hành
Hình bình hành AICD có AC\(\perp\)ID
nên AICD là hình thoi
xét tứ giác AMIN có
^AMI = 90°
^MAN= 90°
^ANI = 90°
=> AMIN là hình chữ nhật
a) Xét tứ giác AMIN có
\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0\), N∈AC, M∈AB)
\(\widehat{AMI}=90^0\)(IM⊥AB)
\(\widehat{ANI}=90^0\)(IN⊥AC)
Do đó: AMIN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: IN⊥AC(gt)
AB⊥AC(ΔBCA vuông tại A)
Do đó: IN//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔABC có
I là trung điểm của BC(gt)
IN//AB(cmt)
Do đó: N là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét tứ giác AICD có
N là trung điểm của đường chéo DI(D và I đối xứng nhau qua N)
N là trung điểm của đường chéo AC(cmt)
Do đó: AICD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AICD có AC⊥DI(IN⊥AC, D∈IN)
nên AICD là hình thoi(Dấu hiệu nhận biết hình thoi)
a: Xét ΔABC có
I là trung điểm của CB
IN//AB
=>N là trung điểm của AC
Xét tứ giác AICD có
N là trung điểm chung của AC và ID
IA=IC
=>AICD la hình thoi
c: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
IN=AB/2=6cm
=>DI=12cm
\(S_{ADCI}=\dfrac{1}{2}\cdot12\cdot16=8\cdot12=96\left(cm^2\right)\)
a, Xté tứ giác AMIN có :
BMI=MAN=INA=900
=> Tứ giác AMIN là hình chữ nhật
b, Xét ΔABC
có : BI=IC ( gt)
IN // AM ( gt )
=> AN=NC
mà IN=ND
=> Tứ giác ADCI là hình bình hành (1)
mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi
c, Kẻ IQ // BK (QϵCD)
ΔBKC có :
BI = IC (gt)
IQ // BK (cách dựng )
cm tương tự : DK=KQ
=> DK=KQ=QC
=> DK/DC = 1/3
tam giác ABC hình như thiếu dữ kiện