K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

Vì tam giác ABC cân tại A nên đường trung trực của cạnh đáy BC đồng thời là trung tuyến của tam giác ABC ứng với cạnh BC.

Kết hợp với giả thiết suy ra G là trọng tâm của tam giác ABC.

a: Xét ΔAHB và ΔAHC có

AB=AC
góc BAH=góc CAH

AH chung

=>ΔAHB=ΔAHC

b: Xet ΔABC có

AH,BD là trung tuyến

AH cắt BD tại G

=>G là trọng tâm

c: Xét ΔABC có

H là trung điểm của BC

HE//AC

=>E là trung điểm của AB

=>C,G,E thẳng hàng

5 tháng 5 2017

Có điểm C' ?

5 tháng 5 2017

Hình như là điểm C đó cậu.Chắc mình gõ nhầm

16 tháng 6 2020

Có : AB = AC ⇒ △ABC cân

Trong △ cân , đường trung trực đồng thời là đường trung tuyến

⇒ Đường trung trực của BC đồng thời là đường trung tuyến

mà hai đường này cắt nhau tại G

⇒ G là trọng tâm

a: Xét ΔAKB và ΔAKC có

AB=AC
góc BAK=góc CAK

AK chung

=>ΔAKB=ΔAKC

ΔABC cân tại A

mà AK là phân giác

nên AK vuông góc CB

b: Xét ΔACB có

BM,AK là trung tuyến

BM cắt AK tại G

=>G là trọng tâm

c: BK=CK=18/2=9cm

=>\(AK=\sqrt{30^2-9^2}=3\sqrt{91}\left(cm\right)\)

=>\(AG=2\sqrt{91}\left(cm\right)\)

28 tháng 4 2022

Ai làm giúp tui câu này điT^T

a: XétΔABD và ΔACD có

AB=AC
\(\widehat{BAD}=\widehat{CAD}\)

AD chung

DO đó: ΔABD=ΔACD

b: XétΔABC có 

AD là đường trung tuyến

CF là đường trung tuyến

AD cắt CF tại G

Do đó: G là trọng tâm của ΔABC