Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a: Xét ΔOAD và ΔOMK có
\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)
\(\widehat{AOD}=\widehat{MOK}\)
Do đó: ΔOAD đồng dạng với ΔOMK
=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)
=>\(OA\cdot OK=OM\cdot OD\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)
=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)
mà BD+CD=BC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)
=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)
c: ME//AD
=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)
KM//AD
=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)
AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)
=>AE=AK
Xét ΔCAD có EM//AD
nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)
=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)
mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)
nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)
=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)
=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)
a: Xét ΔODA và ΔOKM có
\(\widehat{ODA}=\widehat{OKM}\)(hai góc so le trong, AD//KM)
\(\widehat{DOA}=\widehat{KOM}\)
Do đó: ΔODA đồng dạng với ΔOKM
=>\(\dfrac{OD}{OK}=\dfrac{OA}{OM}\)
=>\(OD\cdot OM=OA\cdot OK\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{5}=\dfrac{DC}{10}\)
=>\(\dfrac{DB}{1}=\dfrac{DC}{2}\)
mà DB+DC=BC=12cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{1}=\dfrac{DC}{2}=\dfrac{DB+DC}{1+2}=\dfrac{12}{3}=4\)
=>\(DB=4\cdot1=4cm;DC=4\cdot2=8cm\)
c: Ta có: EM//CA
=>\(\widehat{AEK}=\widehat{KAD}=\widehat{CAD}\left(1\right)\)
Ta có: EK//AD
=>\(\widehat{EKA}=\widehat{BAD}\)(hai góc đồng vị)(2)
ta có:AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)
=>ΔAEK cân tại A
=>AK=AE